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Abstract: This study analyzed the spread and decay durations of the COVID-19 pandemic in different
prefectures of Japan. During the pandemic, affordable healthcare was widely available in Japan
and the medical system did not suffer a collapse, making accurate comparisons between prefectures
possible. For the 16 prefectures included in this study that had daily maximum confirmed cases
exceeding ten, the number of daily confirmed cases follow bell-shape or log-normal distribution
in most prefectures. A good correlation was observed between the spread and decay durations.
However, some exceptions were observed in areas where travelers returned from foreign countries,
which were defined as the origins of infection clusters. Excluding these prefectures, the population
density was shown to be a major factor, affecting the spread and decay patterns, with R2 = 0.39
(p < 0.05) and 0.42 (p < 0.05), respectively, approximately corresponding to social distancing. The
maximum absolute humidity was found to affect the decay duration normalized by the population
density (R2 > 0.36, p < 0.05). Our findings indicate that the estimated pandemic spread duration, based
on the multivariate analysis of maximum absolute humidity, ambient temperature, and population
density (adjusted R2 = 0.53, p-value < 0.05), could prove useful for intervention planning during
potential future pandemics, including a second COVID-19 outbreak.

Keywords: COVID-19; temperature; absolute humidity; population density; spread and
decay durations

1. Introduction

Outbreaks of the infectious coronavirus disease of 2019 (COVID-19) have been reported
worldwide [1,2]. In response, numerous studies on COVID-19 have been conducted on different
aspects, including disease prevention, control, diagnosis, causes, and epidemiology [3]. A state of
emergency was declared in 7 of Japan’s 47 prefectures on 7 April 2020. This state of emergency
was extended nationwide on 16 April and ended on 25 May 2020. During this state of emergency,
people voluntarily self-isolated and no government-enforced lockdown of the prefectures (districts)
was implemented.

Many epidemic modeling approaches exist [4] and various mathematical models have been used
to demonstrate different aspects related to COVID-19, including serial intervals [5], transmission in
China [6], and case studies in Wuhan, China [7], Italy [8], and Spain [9]. Comparisons among different
countries have also been made [10] and the importance of different models in developing policies has
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been discussed in [11]. Regarding the COVID-19 spread in Italy, a multivariate analysis study was
conducted to evaluate the effect of different environmental factors on confirmed positive cases [12].
Three regions in Italy with high national infection rates were considered. In a time-series analysis,
different factors were evaluated within each region. Strong correlations were found with different
environmental factors, such as the average temperature, humidity, and wind speed. Although this
study addressed how these factors were correlated with confirmed COVID-19 cases, it does not discuss
their influence on disease spread and decay durations. However, it does provide a parameter fitting
model based on local data within each region. Being able to estimate the duration of the epidemic in
different prefectures would be useful for developing lockdown policies.

The duration and morbidity rates of COVID-19, however, are not easy to compare because different
co-factors affect them. The number of polymerase chain reaction (PCR) tests, a simple and cost-effective
test conducted in Japan was limited because of its reliability; therefore, chest computed tomography
imaging was performed to obtain highly accurate diagnoses [13]. In addition, to avoid nosocomial
infections and medical resource shortages, it was suggested that people with symptoms (e.g., fever >

37.5 ◦C for no more than four consecutive days) stay home and not seek immediate medical attention
unless they had been in close contact with infected people or had recently visited a foreign country.
Some patients have been reported to be asymptomatic [14], making the statistical study of COVID-19
more complex.

The statistics of confirmed deaths and COVID-19 positive patients are being updated every
day in each prefecture of Japan. Furthermore, the Japanese medical system did not collapse during
the outbreak, and the health insurance system provides COVID-19 medical care for free. However,
the percentage of positive coronavirus tests ranges from 2.2 to 34.8% (Table 1) throughout Japan,
making morbidity estimations in different areas more challenging. Assuming that the criteria for
conducting a test are the same in each prefecture, the estimation of the epidemic duration provides a
useful parameter.

Table 1. Population, area, and population density data of 19 prefectures where daily maximum cases
of COVID-19 exceeded 10. Total cases of COVID-19 and mean percentages of the positive test cases are
also listed.

Population
(×1000)

Population
Density (People

Per km2)

Total Cases
(Through 25

May)

Daily Max
Cases

Percentage of
Positive Test
Results (%)

Tokyo 13,921 6354.8 5170 206 34.8
Kanagawa * 9198 3807.5 1336 94 14.7

Saitama * 7350 1932.0 1000 56 5.2
Chiba * 6259 1217.4 904 70 6.4
Ibaragi 2860 470.4 168 28 3.7
Gunma 1942 304.6 149 44 4.2

Shizuoka 3644 467.9 75 18 2.2
Aichi 7552 1460.0 507 21 5.2

Gifu ** 1987 187.3 150 18 4.4
Ishikawa 1138 271.7 296 20 11.2
Toyama 1044 245.6 227 21 7.3
Osaka 8809 4631.0 1781 108 6.1

Hyogo *** 5466 650.4 699 57 6.4
Kyoto *** 2583 560.1 358 20 4.6
Shiga *** 1414 352.0 100 12 5.7

Hiroshima 2804 331.1 167 51 2.5
Fukuoka 5104 1024.8 672 108 5.7
Saga **** 815 333.6 47 11 3.4
Okinawa 1453 637.5 81 17 2.9

* Kanagawa, Saitama, and Chiba are considered adjacent prefectures of Tokyo. ** Gifu is considered an adjacent
prefecture of Aichi. *** Hyogo, Kyoto, and Shiga are considered adjacent prefectures of Osaka. **** Saga is considered
an adjacent prefecture of Fukuoka.



Int. J. Environ. Res. Public Health 2020, 17, 5354 3 of 14

Environmental co-factors potentially influencing COVID-19 morbidity, including ambient
temperature, absolute humidity, and air pollution, have been studied [15–22]. However, neither
these studies nor the above-mentioned modeling studies have considered the impact of population
density and ambient conditions on both the spread and decay duration [23]. In fact, the durations
were not discussed at all. The necessity of population density scaling in epidemic transmission models
has been suggested for infectious diseases in general [24], indicating that the factors characterizing the
spread and decay durations might be different. Recent studies have confirmed the effect of temperature
and relative humidity on morbidity rates in Brazil [22,25] and the morbidity/mortality rates in Japan [26].
Studies with wider scopes include global data analysis—discussion on how temperature and humidity
are correlated with the infection and fatality rates of the COVID-19 pandemic [27,28]. Both studies
focus on the morbidity and mortality rates in their respective study area and globally, but neither of
them discusses the effect of environmental factors on the duration of COVID-19, which is an essential
factor for policymaking. Its effect on the mortality and morbidity rates is still controversial; for example,
no correlation with weather data was found in a study of 122 cities in China [19], whereas a correlation
was reported in [15]. A report highlighting the duration of the pandemic spread may lead to better
management of medical resources and protective gear, which is a well-known life-threatening factor
during the evolution of COVID-19.

In this study, we evaluate the effect of different ambient conditions and population densities on
the spread and decay durations of COVID-19 in different prefectures of Japan. To the best of our
knowledge, this is the first study to discuss the effect of environmental factors during COVID-19 in
Japan. Japan provides an interesting case study for environmental factors, because medical services
and social reactions are similar nationwide and high-quality data were properly recorded.

2. Materials and Methods

2.1. Data Source

Three datasets were utilized in this study. The first dataset contains the number of confirmed
positive cases in each prefecture that was obtained from Toyo Keizai Online [29] and is based on a
report by the Ministry of Health, Labour and Welfare [30].

Because the state of emergency was terminated on 25 May 2020, this study utilized data from 15
March 2020, to that date. COVID-19 started spreading in mid-February in the Aichi Prefecture, which
is the only prefecture where the spread started earlier than 15 March. As such, additional data were
obtained from the Aichi Prefecture website [31] and included in this study.

The second dataset consists of population and prefecture area data that were obtained from the
Statistics Bureau of Japan [32] (Table 1). Several prefectures are classified as geographically adjacent
to primary prefectures (Tokyo, Osaka, Aichi, and Fukuoka; Table 1). In adjacent prefectures, several
people were found to commute to the primary prefectures, thus potentially affecting the prefecture
data, and should, therefore, not be neglected.

The third dataset contains weather data obtained from the Japan Meteorological Agency for each
prefecture during the time of the pandemic. The absolute humidity was derived from the relative
humidity and ambient temperature data [33].

2.2. Data Processing

The number of confirmed positive tests may be influenced by diagnostic data, based on Japanese
guidelines, serial intervals, and latency, which is affected by each doctor’s judgment; therefore, the
moving average over 7 days (± 3 days in addition to the corresponding day) was considered to reduce
the effect of potential singularities. This duration was used in the trajectory analysis of COVID-19 as
well [34], also considering its incubation time (mean value of 5.1 days) [35]. Additional small peaks
were still observed, which were attributed to clusters of patients (e.g., nosocomial infections, nursing
home patients, and people returning from foreign countries). Similar to other countries, the number
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of confirmed positives may depend on the day of the week (see [34]); in general, the number of tests
conducted on weekends is lower than on weekdays.

This tendency prevents the direct fitting of the observed cases for comparison with a computational
model (typically expressed as a bell-shape or a log-normal distribution, similar to the trend in theoretical
models [36,37]). Therefore, our study introduces the criteria of days required for spreading from
10% to 90% and for decaying from 90% to 10% of the peak [38] of the confirmed positives (7-day
average [34]), as metrics for the evaluation, as shown in Figure 1a. This metric is particularly useful
for cases where the noise effect should not be neglected. A limitation of this metric is that a certain
minimum number of samples is needed because if the number of samples is small, one or two new
patients would significantly influence the results. Therefore, as a pre-processing step, prefecture data
were excluded if the daily maximum number of confirmed positive cases was less than 10. In addition,
the percentage of morbidity/mortality in nosocomial infections and nursing home patients should not
be significant. In Ishikawa, however, 75% of the confirmed deaths were nosocomial infections. Two
prefectures (Saitama and Shiga) were excluded from the analysis due to a lack of humidity data, which
are essential for discussing the effect of ambient conditions on the spread and decay durations (see the
data source in the next subsection). Based on this criterion, 16 prefectures met the minimum number
of confirmed positive cases, as shown in Figure 1b.
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Table 2. Starting and terminating dates of the spread and decay stages of the COVID-19 pandemic 
and the date (year 2020) when the highest daily peak value of confirmed cases was reported. 

 TSS TSE Daily Peak * TDS TDE DS DD 
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Figure 1. (a) Proposed definition of the spread and decay durations along the curve of the COVID-19
pandemic, which has been applied to the 7-day moving average of original data. Time parameters
extracted from the definition are TSS (start of spread), TSE (end of spread), TDS (start of decay), TDE

(end of decay), DS (spread duration), and DD (decay duration). (b) Map of Japan with 16 prefectures
under study classified as primary prefectures and adjacent prefectures (others).

2.3. Statistics

A statistical analysis was conducted to determine the correlation between different factors and both
the spread and decay periods of the pandemic using the software JMP (SAS Institute, Cary, NC, USA).
To assist the pairwise correlations, we calculated the Spearman’s rank correlation between the spread
and decay durations normalized to the population density and different environmental parameters.
The correlation matrix with partial correlation probabilities was also calculated. Subsequently, a
multivariate analysis using linear regression was conducted using the same software. Statistical
significance was accepted at p < 0.05.

3. Results

Table 2 lists the starting and terminating dates of the spread and decay stages (using moving
averages) as well as the date of the peak value of daily confirmed cases (without averaging) observed
for each prefecture. Figure 2 shows the time-series of the confirmed new positive cases for the spread
and decay durations based on the data presented in Table 2.
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Table 2. Starting and terminating dates of the spread and decay stages of the COVID-19 pandemic and
the date (year 2020) when the highest daily peak value of confirmed cases was reported.

TSS TSE Daily Peak * TDS TDE DS DD

Tokyo 17-Mar 3-Apr 17-Apr 10-Apr 7-May 17 27
Kanagawa 19-Mar 3-Apr 10-Apr 11-Apr 19-May 15 38

Chiba 19-Mar 2-Apr 17-Apr 13-Apr 5-May 14 22
Ibaraki 16-Mar 28-Mar 3-Apr 8-Apr 23-Apr 12 15
Gunma 25-Mar 5-Apr 11-Apr 9-Apr 22-Apr 11 13

Shizuoka 25-Mar 3-Apr 10-Apr 6-Apr 27-Apr 9 21
Aichi 22-Feb 30-Mar 4-Apr 1-Apr 27-Apr 37 26
Gifu 25-Mar 4-Apr 8-Apr 6-Apr 17-Apr 10 11

Toyama 1-Apr 13-Apr 17-Apr 18-Apr 30-Apr 12 12
Osaka 18-Mar 6-Apr 14-Apr 13-Apr 6-May 19 23
Hyogo 19-Mar 4-Apr 9-Apr 7-Apr 4-May 16 27
Kyoto 16-Mar 2-Apr 7-Apr 5-Apr 9-May 17 34

Hiroshima 26-Mar 6-Apr 12-Apr 10-Apr 27-Apr 11 17
Fukuoka 22-Mar 1-Apr 11-Apr 9-Apr 27-Apr 10 18

Saga 23-Mar 15-Apr 19-Apr 22-Apr 1-May 23 9
Okinawa 28-Mar 3-Apr 7-Apr 10-Apr 25-Apr 6 15

* Moving average is not applicable for daily peak values.
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As shown in Figure 2a, the number of normalized confirmed cases increased in most prefectures,
and multiple peaks are observed in some prefectures. In Aichi, the start of the spread period, TSS, was
three weeks earlier than in the other studied prefectures (Table 2), and in mid-March, when traveling
residents returned home from foreign countries in response to a call from the Japanese government,
two large peaks are visible in the spread graph. A similar tendency is observed in Saga, while in Chiba,
and Gifu, only small peaks are observed.

As shown in Figure 2b, which illustrates the pandemic decay timeline, the number of normalized
confirmed cases decreased over time in most prefectures. Similar to Figure 2a, multiple peaks are
observed in some prefectures, including Kanagawa and Hyogo. In Aichi, the second peak, whose
magnitude is approximately 0.9 times the maximum value, occurred on 15 April 2020, and was caused
by travelers returning from foreign countries [39].

Figure 3 illustrates the relationship between the durations of the spread and decay stages. These
relationships are separated into two groups based on hierarchical clustering. The red group consists of
metropolitan regions with a relatively high population density compared to the more rural blue group.
Hereafter, the Aichi and Saga are considered to be outliers. Based on Figure 3, we hypothesize that
population density is an important factor, and further investigation is required.
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Figure 4 shows the relationship between the spread and decay durations (DS and DD) and
the population density. The data of Aichi and Saga prefectures were excluded due to their outlier
status. The resulting curves confirm the correlation between the spread and decay durations and the
population density. The coefficients of determination of the spread and decay stages are 0.390 and
0.424 (p < 0.05), respectively.

For environmental factors, the mean daily temperature and humidity values listed in Table 3 were
obtained for the two durations listed in Table 2. Figure 5 shows the effect of the ambient parameters
on the spread and decay durations. The daily mean, maximum, and diurnal change values were
selected based on previous studies on the influenza virus [40,41] and suggest that the temperature and
humidity variations are likely correlated with the COVID-19 mortality rate [15]. As seen in Figure 5,
such a correlation was observed for the data analyzed in this study. If the adjacent prefectures and
those prefectures with multiple peaks in the curves are excluded, a mild correlation is observed for the
maximum absolute humidity (R2 > 0.2) with the spread and decay durations (see also Table 4). In both
cases, including and excluding adjacent prefectures, the maximum absolute humidity is the parameter
that correlates significantly with duration. A brief discussion on how maximum ambient temperature
and maximum absolute humidity are correlated can be found in Appendix A.
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Table 3. Daily average, maximum and minimum temperature, and absolute humidity values. The
values are averaged during the spread and decay stages as listed in Table 2. Tave, Tmax, and Tmin

represent the daily average, maximum, and minimum temperatures, respectively. Have, Hmax, and Hmin

represent the daily average, maximum, and minimum absolute humidity values, respectively.

DS DD

Tave Tmax Tmin Have Hmax Hmin Tave Tmax Tmin Have Hmax Hmin

Tokyo 11.7 16.7 6.7 6.4 9.3 4.5 14.4 19.2 9.9 8.6 10.7 6.7
Kanagawa 12.4 16.7 8.0 6.8 9.7 4.7 16.6 20.7 13.0 9.8 11.7 7.7

Chiba 12.4 16.1 8.1 6.6 9.5 4.6 15.1 19.1 11.2 8.4 10.3 6.4
Ibaragi 10.3 17.1 3.4 5.7 8.5 3.7 10.8 15.6 6.4 6.5 8.2 4.9
Gunma 10.6 15.3 5.4 5.7 7.5 4.6 11.5 16.3 7.2 6.3 8.4 4.9

Shizuoka 13.1 16.6 9.3 8.6 10.6 6.6 14.3 18.7 10.0 7.1 8.9 5.4
Aichi 10.1 14.8 6.0 5.9 7.9 4.4 13.0 18.3 8.6 6.5 8.4 4.9
Gifu 12.0 16.4 7.7 6.7 8.4 4.9 12.6 18.2 7.7 5.1 6.6 3.6

Toyama 9.7 14.6 5.2 6.3 7.7 4.7 12.1 17.6 7.7 7.5 9.1 5.8
Osaka 12.7 17.0 8.9 6.7 8.9 5.1 16.2 20.6 12.3 8.1 10.2 6.3
Hyogo 12.7 16.4 9.1 7.2 9.6 5.3 15.5 19.0 12.4 8.1 9.5 6.0
Kyoto 11.5 16.6 6.8 6.4 8.6 4.7 14.7 20.1 10.0 7.1 9.0 5.3

Hiroshima 12.4 16.2 8.6 6.5 8.5 5.0 13.2 17.4 9.2 5.6 7.4 4.2
Fukuoka 14.2 17.5 11.3 8.8 11.0 6.9 14.0 17.5 10.9 7.3 9.4 5.7

Saga 13.4 17.9 9.0 7.3 9.1 5.5 14.9 20.1 9.8 7.1 8.6 5.4
Okinawa 21.3 24.0 18.8 14.7 17.4 12.4 19.8 22.1 17.6 11.8 14.1 10.0

Table 4. Spearman’s rank correlation coefficients and p-values for spread and decay durations
normalized by population density.

Ds/Density Dd/Density

ρ p-Value ρ p-Value

Tave −0.526 0.05 −0.459 0.099
Tmax −0.659 <0.05 −0.385 0.175
Tmin −0.415 0.140 −0.465 0.094
Tdiff 0.227 0.435 0.487 0.078
Have −0.494 0.061 −0.716 <0.05
Hmax −0.737 <0.05 −0.741 <0.05
Hmin −0.130 0.657 −0.733 <0.05
Hdiff −0.760 <0.05 −0.718 <0.05
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A multivariate correlation analysis was conducted to examine the relationship between the daily 
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excluded due to their outlier status. The results yield adjusted R2 values of 0.53 (p < 0.05) and 0.24 (p 
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Figure 5. Relationship of the spread and decay durations (DS and DD) with (a) daily average temperature
(Tave), (b) daily maximum temperature (Tmax), (c) daily minimum temperature (Tmin), (d) daily average
absolute humidity (Have), (e) daily maximum absolute humidity (Hmax), and (f) daily minimum absolute
humidity (Hmin).

A multivariate correlation analysis was conducted to examine the relationship between the daily
maximum temperature and absolute humidity values measured during the study period (pandemic
spread and decay) and the population density (Figure 6). The data of Aichi and Saga prefectures
were excluded due to their outlier status. The results yield adjusted R2 values of 0.53(p < 0.05)
and 0.24(p = 0.130) in the spread and decay stages, respectively, indicating variability within some
prefectures, as shown in Table 5. The standardized partial regression coefficients of population density,
daily maximum temperature, and absolute humidity are 0.611, 0.203, and −0.682, respectively, for the
spread duration, while they are 0.388, 0.544, and −0.219, respectively, for the decay duration (Figure 6).

Table 5. Coefficients of determination R2, adjusted R2 values and p-values for the multivariate
linear regression.

R2 adj. R2 p-Value

DS 0.641 0.533 <0.05
DD 0.416 0.240 0.130
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Figure 6. Multivariate regression (population density, maximum temperature, and absolute humidity)
results for (a) spread and (b) decay periods.

4. Discussion

The effect of temperature and humidity on morbidity and mortality has long been investigated
in research on health problems caused by different environmental factors (e.g., [42,43]). Even for
COVID-19, as reviewed in the introduction, their influence has been discussed extensively in different
countries. A case study of COVID-19 in Japan highlights the environmental factors in view of the
consistency of data recording, healthcare quality, and social response to the outbreak of the disease.
The limitation of data, which is partly attributable to different policies in Japan, as in Section 2, is one
factor hampering the analysis of available COVID-19 data. A further challenge is the large variation in
data reliability, consistency, and uniformity.

In this study, the durations of the spread and decay stages were evaluated, for the first time, to
assist with the setting of policies and action plans. Although the results obtained in this study cannot
be directly implemented in all cases, it provides valuable insight into how environmental factors
influence the transmission phase during a pandemic in a more general framework.

The COVID-19 spread and decay durations of 16 prefectures in Japan that had a daily maximum
of confirmed positive cases exceeding 10 were compared. A definition of the metrics for both durations
from 10–90% of the normalized confirmed cases has been introduced. Normalization was performed to
avoid potential differences in the absolute number of cases reported among prefectures due to different
regulations. One difficulty in handling the data was the lower number of cases in Japan compared to
most other countries; for example, the number is one to two orders of magnitude smaller than that of
most European countries (e.g., see [34]). As mentioned above, a time-series analysis of COVID-19 cases
in Japan is not feasible due to the Japanese COVID-19 policy combined with the incubation period.

The results of this study show that the number of confirmed cases generally increased and then
decreased, forming bell-shaped or log-normal curves [36,37]. However, significant dual peaks are
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observed in Aichi and Saga during the spread stage and in Aichi, Saga and Tokyo during the decay stage.
According to reports of each prefecture, this is mainly caused by patient clusters, which are attributed
to nosocomial infections, nursing home patients, and travelers returning from foreign countries. In
Aichi, at least one peak is caused predominantly by individuals who returned from foreign countries.
The duration of such peaks is relatively short compared to the prefecture durations and generally
shorter than the estimated ones. The total spread and decay durations in Aichi were shorter than
20 days for the first bell-shaped curve, whereas the estimated duration from the multivariate analysis
was 35 days and thus may not be considered as a second outbreak. If the duration defining threshold
is changed (e.g., 0.05. to 0.95), the tendency does not change for distributions following a bell-shape
and the duration increases by 30%. However, some differences are apparent in prefectures where small
peaks (i.e., cluster infections) are observed. In general, such prefectures have been excluded or treated
separately, thus not influencing our conclusions.

Most noteworthy is the evaluation of the effect of population density on the spread and decay
durations. The results for the primary prefectures show a good correlation between these parameters,
indicating that population density functions as a rough proxy for social distancing [44]. Our data
indicate that it significantly influences the formation of the bell-shape of the curve describing the
pandemic. By normalizing our data using population density, we found good correlations between
the temperature and absolute humidity, and the identified durations. This is surprising because the
ambient conditions in the real world vary significantly with time (e.g., [45–47]). Regarding ambient
condition parameters, the daily maximum absolute humidity had the greatest effect.

The parameters obtained with multivariate linear regression analysis were applied for the
predictions: adjusted R2 values are 0.53 (p < 0.05) and 0.24 (p = 0.13) for the spread and decay durations,
respectively; that is, the decay duration is not statistically significant. The small peaks observed in the
prefectures adjacent to the primary prefectures (Figure 2b) could be the potential reason for this.

This demonstrates that in adjacent prefectures the influence of the primary prefectures may not be
neglected because residents commuting between the prefectures influence the spread and/or decay
durations. For example, Hyogo prefectural governor decided to match the end of state emergency
with that in Osaka; they are adjacent with each other.

Therefore, additional constraints were defined to exclude prefectures located adjacent to primary
prefectures to avoid the influence of infections caused by neighboring major pandemic clusters. A set
of nine prefectures demonstrated a strong correlation of the average absolute humidity and population
density, yielding adjusted R2 values of 0.896 (p < 0.05) and 0.681 (p < 0.05) in the spread and decay
stages, respectively.

The importance of absolute humidity was suggested in previous studies on the morbidity/mortality
rate of the influenza virus [48,49] and also in a preliminary study of COVID-19 [22]. Note that
the differences in other parameters, including maximum and average temperatures, and average
absolute humidity, show comparable correlations. In [22] the role of the ambient parameters could
not be adequately constrained, and controversies and inconsistencies remained (see the review in
“Introduction”).

A straightforward comparison of our findings with those of different countries is not feasible
because the data is measured based on different closure policies, testing rates, validation measures,
etc., which would introduce several biases. Further factors influencing data accuracy are lockdown
restrictions, social distancing, and public response. Recently, the effect of air-conditioning units on
COVID-19 transmission has also been suggested [50]. This case study on the pandemic duration in
Japan nevertheless provides a highly consistent result that may lead to a better understanding of
this correlation.

5. Conclusions

This study investigates the correlation of the durations of the spread and decay stages of COVID-19
with ambient conditions and population density in 16 prefectures of Japan. Although the number of
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cases reported in Japan is limited, the uniformity of the data provides a fairly consistent conclusion;
the population density is dominant, and higher absolute humidity and temperature may result in
shorter durations. Some exceptions exist, especially in prefectures where travelers returned from
foreign countries. In addition, the durations in adjacent prefectures were influenced by the primary
prefectures (e.g., Tokyo, Osaka, Aichi, and Fukuoka), resulting in longer durations. For a potential
pandemic, especially a potential second wave of COVID-19, this factor should be considered as well as
the multi-city comparison for developing different protection policies.
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Appendix A

The relationship between the different ambient condition metrics and morbidity is often discussed
(e.g., [51]). For the COVID-19 duration analyzed in this study, the correlation between the maximum
temperature and maximum absolute humidity in the spread duration presented in Figure A1 are
significant (p < 0.05). The duration of COVID-19 was generally limited to two months; thus, the metrics
considered in the discussion of Figure 6 are correlated unlike the discussion of their annual impact on
influenza (e.g., [49]).
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