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Abstract

Following its initial appearance in December 2019, coronavirus disease 2019 (COVID-19)

quickly spread around the globe. Here, we evaluated the role of climate (temperature and

precipitation), region-specific COVID-19 susceptibility (BCG vaccination factors, malaria

incidence, and percentage of the population aged over 65 years), and human mobility (rela-

tive amounts of international visitors) in shaping the geographical patterns of COVID-19

case numbers across 1,020 countries/regions, and examined the sequential shift that

occurred from December 2019 to June 30, 2020 in multiple drivers of the cumulative number

of COVID-19 cases. Our regression model adequately explains the cumulative COVID-19

case numbers (per 1 million population). As the COVID-19 spread progressed, the explana-

tory power (R2) of the model increased, reaching > 70% in April 2020. Climate, host mobility,

and host susceptibility to COVID-19 largely explained the variance among COVID-19 case

numbers across locations; the relative importance of host mobility and that of host suscepti-

bility to COVID-19 were both greater than that of climate. Notably, the relative importance of

these factors changed over time; the number of days from outbreak onset drove COVID-19

spread in the early stage, then human mobility accelerated the pandemic, and lastly climate

(temperature) propelled the phase following disease expansion. Our findings demonstrate

that the COVID-19 pandemic is deterministically driven by climate suitability, cross-border

human mobility, and region-specific COVID-19 susceptibility. The identification of these mul-

tiple drivers of the COVID-19 outbreak trajectory, based on mapping the spread of COVID-

19, will contribute to a better understanding of the COVID-19 disease transmission risk and

inform long-term preventative measures against this disease.

Introduction

The spread of infectious diseases through host–pathogen interaction is fundamentally under-

pinned by macroecological and biogeographical processes [1, 2]; key processes include virus

origination, dispersal, and evolutional diversification through local transmissions in human

societies [3]. Since December 2019, coronavirus disease 2019 (COVID-19), caused by sudden
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acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread worldwide from

Wuhan, China [4]. The disease transmission geography of COVID-19 was highly heteroge-

neous; some countries (e.g., Japan) had cases from the earliest stage of this pandemic, but their

increase in the number of new cases was relatively moderate, whereas others (e.g., EU nations

and the USA) experienced later but substantial COVID-19 outbreaks. To predict infection risk

on the global scale, the forces driving the COVID-19 outbreak patterns must be identified [5].

Additionally, capturing region-specific factors influencing the outbreak progress is critically

important for improving long-term control measures against this ongoing pandemic.

Infectious diseases due to respiratory viruses are empirically characterized by a seasonal

nature [6]. Moriyama et al. [7] described a framework to better understand the mechanisms of

virus transmission; air temperature, absolute/relative humidity, and sunlight are jointly associ-

ated with virus viability/stability and host defense, and thereby human-to-human transmission

of COVID-19 is promoted by contact rates along with host susceptibility (or immunity) to

COVID-19. From this viewpoint, several research groups have focused on relevant factors sep-

arately and quickly examined the role of climate [8–10], international mobility linked to

human contact [11, 12], and community-based host susceptibility to COVID-19 [13]. How-

ever, these analyses were inconclusive, and the relative importance of these factors in promot-

ing the disease expansion of COVID-19 remains unclear.

This study assessed multiple potential drivers of the COVID-19 spread, by conducting an

analysis of time-series data on the number of confirmed COVID-19 cases from December

2019 through June 2020, as well as on country/region-specific variables, e.g. socioeconomic

conditions and screening effort (number of SARS-CoV-2 PCR tests conducted), that could

potentially affect the number of COVID-19 cases. Specifically, we explored the roles of climate,

international mobility, and region-specific conditions in the disease expansion by controlling

covariates. In this analysis, we evaluated the relative importance of climate (temperature and

precipitation relevant to habitat suitability for SARS-CoV-2), region-specific COVID-19 sus-

ceptibility (BCG vaccination factors, malaria incidence, and the relative proportion of citizens

aged over 65 years in the population, as these were hypothesized to be linked with host suscep-

tibility to COVID-19), and human mobility (international travel) in shaping the current geo-

graphical patterns of COVID-19 spread around the world.

Materials and methods

Data sources

We compiled geographic data on the number of reported COVID-19 cases per day from

December 2019 to June 30, 2020. We collected the numbers of COVID-19 cases for 1,020

countries/regions from various sources (see S1 Appendix for a list of data sources for the

COVID-19 cases). We then calculated the length of time (in days) since the onset of COVID-

19 spread as defined by the date of the first confirmed case in each country or region. We also

examined the number of SARS-CoV-2 PCR tests conducted based on data published by the

World Health Organization (WHO) (https://ourworldindata.org/covid-testing) to assess the

influence of sampling effort on the number of confirmed cases of COVID-19.

For each country or region, we compiled several environmental variables. For mapping

cases of COVID-19, the longitude and latitude of the largest city and area for each country or

region were extracted from GADM maps and data (https://gadm.org/index.html). Based on

the geocoordinates of the cities, we collected the climatic data of mean precipitation (mm

month–1) and temperature (˚C) from January to June (WorldClim) using WorldClim version

2.1 climate data (https://www.worldclim.org/data/worldclim21.html) at a resolution of 2.5 arc-

minutes grid cells that contained a country or region.
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Regarding international travel linked to the disease transmission, we compiled the average

annual number of foreign visitors (per year) for individual countries/regions from data pub-

lished by the World Tourism Organization (https://www.e-unwto.org/toc/unwtotfb/current).

We then calculated the relative amount of foreign visitors per population of each country or

region to use in the analysis.

Regarding region-specific host susceptibility to COVID-19, we collected data on the follow-

ing three epidemiologic properties: the proportion of the population aged over 65 years, the

malaria incidence (per year), and information regarding bacillus Calmette–Guérin (BCG) vac-

cination. We included these attributes in our analyses based on the assumptions that BCG vac-

cination and/or recurrent treatment with anti-malarial medications could be associated with

providing some protection against COVID-19 [13, 14]. We compiled BCG data from the

WHO (https://www.who.int/malaria/data/en/) and (https://apps.who.int/gho/data/view.main.

80500?lang=en) and the BCG Atlas Team (http://www.bcgatlas.org/) on the following five

attributes: i) the number of years since BCG vaccination was started (BCG_year); ii) the pres-

ent situation regarding BCG vaccination (BCG_type), split into all vaccinated, partly vacci-

nated, vaccinated once in the past, or never vaccinated; iii) the relative frequency of post-1980

(i.e., the past 40 years) BCG vaccination for people aged less than 1 year old (BCG_rate); iv)

the number of BCG vaccinations (MultipleBCG), describing countries as never having vacci-

nated their citizens with BCG, vaccinated their citizens with BCG only once, vaccinated their

citizens with BCG multiple times in the past, or currently vaccinate their citizens with BCG

multiple times; and v) tuberculosis cases per 1 million people (TB). These BCG-related vari-

ables are strongly intercorrelated. Therefore, we reduced the dimensions of these variables

(BCG_year, BCG_type, BCG_rate, MultipleBCG, and TB) by extracting the first axis of the

PCA analysis: the score of the PCA 1 axis was negatively correlated with the five variables, so

the PCA 1 score multiplied by –1 was defined as the BCG vaccination effect.

We also compiled socioeconomic data for each country or region. The population size, pop-

ulation density (per km2) (Gridded Population of the World GPW, v4.; https://sedac.ciesin.

columbia.edu/data/collection/gpw-v4), gross domestic product (GDP in US dollars), and GDP

per person were obtained from national census data (World Development Indicators; https://

datacatalog.worldbank.org/dataset/world-development-indicators).

Statistical analyses

The monthly pattern for the cumulative number of COVID-19 cases in each country/region

was visualized in relation to the geography, biome type, and climate (mean temperature and

annual precipitation) of that location. In addition, the pattern of increasing COVID-19 case

numbers was evaluated based on country type, with individual countries being classified into

four types defined by the number of COVID-19 cases per week and the date of outbreak onset.

To ensure the robustness of our results, we investigated the relationship between various

environmental variables (climate, host susceptibility to COVID-19, international human

mobility, and socioeconomic factors) and the number of COVID-19 cases (per 1 million popu-

lation) using the two different approaches: conventional multiple linear regression and ran-

dom forest, which is a machine-learning model [15]. We separately modeled the cumulative

number of COVID-19 cases (per 1 million population) in successive periods from December

2019 to June 30, 2020.

In the multiple regression analysis, we set the log-scaled cumulative number of COVID-19

cases within a period as the response variable and the climatic factors (mean temperature,

squared mean temperature, and log-scaled monthly precipitation), socioeconomic conditions

(log-scaled population density and GDP per person), international human mobility (the
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relative amount of foreign visitors per population) and region-specific COVID-19 susceptibil-

ity (the percentage of people aged� 65 years, the log-scaled relative incidence of malaria, and

the BCG vaccination effect) as explanatory variables.

To control for country/region-specific observation biases, we included the length of time

(measured in days) since the first confirmed COVID-19 case in each country/region and the

number of COVID-19 tests conducted (as a measure of sampling effort) as covariates. In addi-

tion, we applied the trend surface method to take spatial autocorrelation into account as a

covariate; we added the first eigenvector of the geo-distance matrix among the countries or

regions, which was computed using the geocoordinates of the largest city, as a covariate [16].

The explanatory power of the model was evaluated by the adjusted coefficient of determination

(R2). We also calculated the relative importance of each explanatory variable in a regression

model according to its partial coefficient of determination and determined the predominant

variables that explained the variance in the response variables. The statistical significance of

each variable was determined by conducting F-test. All the explanatory variables were stan-

dardized to have a mean of zero and a variance of one before these analyses. The explanatory

factors of the regression model were compared between the four country types.

In the random forest model, we used the same set of response and explanatory variables, as

well as the same covariates. In each run of the random forest analysis, we generated 1,000

regression trees. The model performance was evaluated by the proportion of variance

explained by the model. We evaluated the relative importance of each explanatory variable

based on the increase in the mean squared error when the variable was permutated.

Before these analyses, we tested the collinearity between the explanatory variables by calcu-

lating the variance inflation factor (VIF). For the study period, the largest VIF value was 8.56,

and the VIF at June 30, 2020 was 8.56, indicating the absence of multicollinearity in the

regression.

To confirm the testing effort bias on the number of confirmed cases, we conducted an addi-

tional analysis that accounted for the number of conducted tests (i.e., sampling efforts) in indi-

vidual countries/regions, as a covariate in the model. Note that this analysis was applied to the

data from 128/828 countries/regions, because testing data for many countries is currently

unavailable (https://ourworldindata.org/covid-testing).

All analyses were performed with the R environment for statistical computing [17]; the ‘sf’

package was used for graphics artworks [18] and the ‘randomForest’ package was used for the

random forest analysis [19].

Results and discussion

COVID-19 (as measured by the number of cases per 1 million population) spread rapidly

across the globe after it first appeared in Wuhan, China in December, 2019 (Li et al. 2020) (Fig

1; S1 Video), but the outbreak appears to have occurred in particular climates around 8˚C and

26˚C or biomes (Fig 2; S2 Video). Moreover, the patterns of increasing number of COVID-19

cases per week varied among the countries that are characterized by different COVID-19

spread dates (Fig 3 and S1 Fig).

Although the COVID-19 case numbers may not be suitable for conducting epidemiological

analyses, such as modelling the disease growth dynamics, the available COVID-19 case data

can be still informative for the implementation of containment and/or suppression measures

because the number of the confirmed cases is directly linked to the consumption of medical

resources for combatting the COVID-19 pandemic. Here, we observed that the cumulative

number of the COVID-19 cases (per 1 million population) according to the disease spread

progression was significantly correlated with variables related to climate, international human
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mobility, and host susceptibility to COVID-19, at successive periods since December, 2019

(Fig 4).

The explanatory power, i.e., coefficient of determination (R2), of the model as the COVID-

19 pandemic progressed, reaching >70% in April 2020 (Fig 5A). The number of days from

case onset had some explanatory power (> 20%) in January, 2020, but this factor quickly lost

its influence as the pandemic progressed (Fig 5B). As the influence of this factor waned, other

variables (related to climate, human mobility, and host susceptibility to COVID-19) exhibited

the increasing explanatory powers (Fig 5B). After April 2020, the explanatory power of vari-

ables related to human mobility and host susceptibility to COVID-19 rapidly decreased. After

this, the explanatory power of human population and climate factors increased. These results

demonstrate that the impact of virus dispersability between/within regions was predominant

in the beginning stage of the pandemic (Fig 5).

Fig 1. Geographical distribution of COVID-19 cases (per 1 million population) for 1,020 countries/regions worldwide. (A–F) Monthly patterns for the

cumulative number of COVID-19 cases on January 31, 2020 (A), February 29, 2020 (B), March 31, 2020 (C), April 30, 2020 (D), May 31, 2020 (E), and June 30,

2020 (F) based on the cumulative number of day-to-day COVID-19 cases since December 2019. See S3 Video. The map was prepared using shapefile reprinted

from a freely available database (GADM; www.gadm.org).

https://doi.org/10.1371/journal.pone.0239385.g001
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Fig 2. The distribution of COVID-19 cases across biome types based on the relationship between mean

temperature and annual precipitation. Biome classification is based on the scheme by Whittaker [20]. (TR) tropical

rain forest; (TS) tropical seasonal forest/savanna; (TE) temperate rain forest; (SD) subtropical desert; (TD) temperate

deciduous forest; (WS) woodland/shrubland; (TG) temperate grassland/desert; (BF) boreal forest, (TU) tundra. Colors

indicate the number of COVID-19 cases (per 1 million population) and also contours of climatic regions with�1000

cases per 1 million population. (A–F) Monthly patterns for the cumulative number of COVID-19 cases on January 31,

2020 (A), February 29, 2020 (B), March 31, 2020 (C), April 30, 2020 (D), May 31, 2020 (E), and June 30, 2020 (F) based

on the cumulative number of day-to-day COVID-19 cases since December 2019. Arrows indicate the location of

Wuhan in China. See S4 Video.

https://doi.org/10.1371/journal.pone.0239385.g002
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The standardized regression coefficients of the model greatly changed (from non-signifi-

cant to significant) over the period from December, 2019 to April 12, 2020 (Fig 6). After Feb-

ruary, 2020, the mean temperature was negatively correlated with the cumulative number of

COVID-19 cases, whereas the mean precipitation was positively correlated with these values

(Fig 6A–6C). After March, 2020, relative amount of foreign visitors per population and GDP

per person were predominantly positively correlated with the cumulative number of COVID-

Fig 3. Patterns for the cumulative number of COVID-19 cases (per 1 million population) in relation to country type. Based on the

pattern of increasing COFVID-19 case numbers, individual countries were classified into four types (A–D): (A) Type A, countries that had a

peak in the number of COVID-19 cases per week before the middle of April and had more than 1,000 COVID-19 cases per 1 million

population; (B) type B, countries that exhibited an increase in the number of COVID-19 cases per week after the middle of June and had

more than 1,000 COVID-19 cases per 1 million population; (C) type C, countries that had a peak in the number of COVID-19 cases per

week before the middle of April and had less than 1,000 COVID-19 cases per 1 million population; (D) type D, countries that exhibited an

increase in the number of COVID-19 cases per week after the middle of June and had less than 1,000 COVID-19 cases per 1 million

population. The map was prepared using shapefile reprinted from a freely available database (GADM; www.gadm.org).

https://doi.org/10.1371/journal.pone.0239385.g003
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Fig 4. Standardized regression coefficients and the partial coefficient of determination (r2) of each explanatory

factor in the regression model explaining the cumulative number of COVID-19 cases (per 1 million population).

(A–F) Values for the period from December 2019 to January 31, 2020 (A), February 29, 2020 (B), March 31, 2020 (C),

April 30, 2020 (D), May 31, 2020 (E), or June 30, 2020 (F). Temp, mean temperature; Temp2, squared mean

temperature; Prec, mean monthly precipitation; Pop dens, population density; Visitor, relative amount of foreign

visitors per population; GDP, gross domestic product per person; BCG, BCG vaccination effect as defined by the first

PCA axis summarizing five variables related to BCG vaccination (see the Methods section for details); Malaria, relative

malaria incidence; Age, relative proportion of the population aged�65 years; First cases, number of days from case

onset. The regressions were conducted using ordinary least squares analyses. Vertical lines represent the 95%

confidence intervals of parameters. Closed symbols indicate the significance of explanatory variables (p< 0.05). The

coefficient of determination (R2) for the overall model is also shown. A nonlinear modeling analysis was also

conducted using the random forest method with the same set of response and explanatory variables and the same

covariates; the results of this parallel analysis are shown in S2 Fig.

https://doi.org/10.1371/journal.pone.0239385.g004
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19 cases (Fig 6E and 6F). In contrast, since February or March 2020, the BCG vaccination fac-

tors and malaria incidence were consistently negatively correlated with the cumulative number

of COVID-19 cases (Fig 6G and 6H). Population density was slightly positively correlated with

the cumulative number of COVID-19 cases (Fig 6D). The relative proportion of the population

aged�65 years was also positively correlated with these values, except for a temporary period

where it was negatively correlated (Fig 6I). This shift from positive to negative correlation

reflects the initial spread of COVID-19 in developed countries with relatively older population

and the later (after May 2020) spread of COVID-19 in developing countries with relatively

younger populations. In the early stage of COVID-19 spread, the number of days from case

onset was strongly positively correlated with the cumulative number of COVID-19 cases (Fig

6J).

The results of the random forest model were generally consistent with those of the linear

multiple regression model (S2 Fig). The relative importance of the variables related to human

mobility and host susceptibility to COVID-19 (elderly population, BCG vaccination effect, and

Fig 5. Coefficients of determination (adjusted R2) of the regression model explaining the cumulative number of COVID-

19 cases (per 1 million population) from December, 2019 to June 30, 2020. (A) Overall coefficient of determination of the

regression model; (B) coefficient of partial determination (r2) for each explanatory variable in the model. The results shown are

based on data starting from January, 2020, because the number of cases in December 2019 was insufficient for this analysis.

https://doi.org/10.1371/journal.pone.0239385.g005
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malaria incidence) became predominant over time, whereas the relative importance of popula-

tion density and the number of days from case onset decreased after March 2020. Moreover,

additional analyses, which included the number of conducted COVID-19 tests as a covariate,

revealed very similar patterns of regression coefficients, and their explanatory power (S3 Fig),

Fig 6. Time-series pattern of the standardized regression coefficients of the model explaining the cumulative

number of COVID-19 cases (per 1 million population) from December 2019 to June 30, 2020. Vertical lines

represent the 95% confidence intervals of parameters. The results are based on data starting from January 2020 because

the number of COVID-19 cases in December 2019 was insufficient for this analysis.

https://doi.org/10.1371/journal.pone.0239385.g006
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i.e., the roles of climate, international human mobility, and host susceptibility to COVID-19,

became more pronounced as the pandemic progressed. Therefore, the nonlinearity of epi-

demic and region-specific testing bias had no serious influence on identifying the environ-

mental drivers shaping the present COVID-19 distribution.

This study generally supports the findings of several recent reports, which found that cli-

mate [8–10], international human mobility [11, 12], and community-based host susceptibility

to COVID-19 [13] jointly contributed to the spread of COVID-19. Notably, the explanatory

power of these drivers substantially increased as the pandemic progressed, indicating a deter-

ministic expansion of COVID-19 around the world.

Cross-border human mobility, which has been facilitated by globalization [21], clearly

accelerated the COVID-19 pandemic. This finding is in line with a report by Coelho et al. [12],

which emphasized the role of the air transportation network in this pandemic. In addition,

region-specific COVID-19 susceptibility, which was approximated here by BCG vaccination

factors, malaria incidence (because COVID-19 susceptibility may be linked to anti-malarial

drug use), and the proportion of the population aged over 65 years, explained a substantial

part of the variance in COVID-19 case numbers worldwide. This data support the findings by

Sala et al. [13] that there is a significant correlation between BCG vaccination and COVID-19

prevalence. Notably, these correlation patterns may change as the pandemic progresses. For

example, while the COVID-19 case numbers (per 1 million population) exhibited a relatively

robust correlation with malaria incidence, their correlation with the BCG vaccination effect

weakened after April 2020, potentially as a result of the recent spread of COVID-19 into more

countries with a BCG vaccination program (e.g., Japan, Russia, Turkey, and Brazil).

Our analysis using the regression model, which comprehensively accounted for climate,

international human mobility, region-specific COVID-19 susceptibility, and socioeconomic

conditions, revealed that climate suitability remains an important driver shaping the current

distribution of COVID-19 cases [5, 9]. Although human mobility and host susceptibility to

COVID-19 were found to be the main drivers in the spread of COVID-19, the uneven distri-

bution of COVID-19 cases across biome types (Fig 2 and S2 and S4 Videos) suggests that the

pandemic may be partially shaped by biogeographical patterns [22]. However, until the pan-

demic has lasted a full year, it will not be possible to draw reliable conclusions on the relation-

ship between abiotic factors and COVID-19 [7].

Our predictive model does not account for variables relevant to local-scale factors that are

associated with community infection or containment/suppression measures implemented

against the epidemic in individual countries/regions. Consequently, the model has residuals

(Fig 7), i.e., deviations in the observed number of COVID-19 cases that reflect the influence of

local-scale drivers on disease spread. Positive deviations in the number of COVID-19 cases

may indicate more serious local-scale cluster infections, e.g., in some prefectures in Japan or in

parts of South East Asia, Africa, and South America, than predicted by the macro-scale driver-

based model, whereas negative deviations in the number of COVID-19 cases indicate the influ-

ence of distributional disequilibrium of COVID-19 cases (because SARS-CoV-2 has only

recently reached an area, e.g., Africa) or suggest the effectiveness of the present control mea-

sures in an area.

There is still a distributional disequilibrium in the global prevalence of infections; the num-

ber of confirmed COVID-19 cases changes daily, and the trajectories among countries or

regions differ largely (Fig 3 and S1 Fig). The drivers of COVID-19 case numbers indicate a

country-specific pattern (Table 1).

The type A countries, with more than 1,000 COVID-19 cases per million in which the infec-

tion peaked before mid-April, were mostly the developed countries that had predominant

cross-border human mobility in relatively cool and dry climates. The type B countries, with
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more than 1,000 COVID-19 cases per million in which the infection spread peaked after mid-

June, were quasi-developed countries with BCG vaccination programs. The type C countries,

with less than 1,000 COVID-19 cases per million in which the infection peaked before mid-

April, were countries with high temperature and humidity that are characterized by lower

cross-border mobility and more BCG vaccination. The type D countries, with less than 1,000

COVID-19 cases per million in which the infection spread peaked after mid-June, were mostly

tropical developing countries with lower population density, less cross-border mobility, higher

malaria incidence, and less BCG vaccination. These country-specific factors indicate that the

COVID-19 spread is not simply driven by specific environmental variables, and the underlying

mechanisms are complicated (Table 1). Therefore, evaluating the drivers of the COVID-19

spread at the present phase of disease expansion is a challenging task.

Fig 7. Residual pattern of the regression model predicting the number of COVID-19 cases (per 1 million population) for 1,020

countries/regions across the globe and for 47 prefectures in Japan. The map was prepared using shapefile reprinted from a freely

available database (GADM; www.gadm.org).

https://doi.org/10.1371/journal.pone.0239385.g007

Table 1. Drivers of the COVID-19 spread in relation to the country types. Country types were defined by the patterns of COVID-19 spread (cases per 1 million popula-

tion) (see Fig 3). Type A, countries that had a peak in the number of COVID-19 cases per week before the middle of April and had more than 1,000 COVID-19 cases per 1

million population; type B, countries that exhibited an increase in the number of COVID-19 cases per week after the middle of June and had more than 1,000 COVID-19

cases per 1 million population; type C, countries that had a peak in the number of COVID-19 cases per week before the middle of April and had less than 1,000 COVID-19

cases per 1 million population; and type D, countries that exhibited an increase in the number of COVID-19 cases per week after the middle of June and had less than

1,000 COVID-19 cases per 1 million population. The statistical significance of differences between the country types was tested by a Bonferroni’s multiple comparison test.

Different letters indicate the values that are significantly different (p< 0.05) from each other.

Factor Type A Type B Type C Type D

Mean annual temperature 11.1 (±3.88) a 14.6 (±8.87) b 18.5 (±7.96) c 21.4 (±6.81) d

Mean annual precipitation 865 (±368) a 806 (±541) a 1250 (±629) b 1290 (±869) b

Population density 485 (±1060) 342 (±1400) 391 (±1500) 164 (±243)

Relative frequency of visitors 154 (±329) a 36.1 (±65.4) b 73.8 (±97.4) b 16.4 (±27.2) b

GDP per person 50200 (±21500) a 18500 (±18300) b 22200 (±18100) b 5690 (±5430) c

BCG vaccination effect -1.37 (±1.42) a 0.752 (±1.37) b 0.467 (±1.51) b 0.88 (±0.694) b

Relative frequency of people infected by malaria 0.163 (±1.26) a 2180 (±14200) a 2950 (±31800) a 40100 (±85000) b

Relative frequency of people� 65 years old 18.9 (±3.17) a 11.6 (±4.92) b 14.8 (±6.51) c 7.33 (±4.5) d

https://doi.org/10.1371/journal.pone.0239385.t001
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The absence of population-wide testing for COVID-19 makes it difficult to investigate the

growth dynamics of COVID-19 infection. The case data include a selection bias due to surveil-

lance focusing mainly on symptomatic persons. In particular, the availability of a reverse tran-

scription polymerase chain reaction (PCR) test to identify COVID-19 cases, e.g. the number of

PCR tests conducted per population, varies greatly among countries with different medical/

public-health conditions (https://ourworldindata.org/covid-testing). Therefore, the true num-

ber of the COVID-19 patients and the dynamics of the disease spread are obscured behind the

prevalence of asymptomatic carriers [23, 24]. Nevertheless, our findings demonstrate that the

COVID-19 pandemic is deterministically driven by climate suitability, cross-border human

mobility, and region-specific COVID-19 susceptibility. The present results, based on mapping

the spread of COVID-19 and identifying multiple drivers of the outbreak trajectory, contribute

to a better understanding of the disease transmission risk and may inform the application of

appropriate preventative measures against this pandemic.

Supporting information

S1 Fig. The distribution of four country types classified based on the COVID-19 outbreak

across biomes. Type A, countries that had a peak in the number of COVID-19 cases per week

before the middle of April and had more than 1,000 COVID-19 cases per 1 million population;

type B, countries that exhibited an increase in the number of COVID-19 cases per week after

the middle of June and had more than 1,000 COVID-19 cases per 1 million population; type

C, countries that had a peak in of the number of COVID-19 cases per week before the middle

of April and had less than 1,000 COVID-19 cases per 1 million population; and type D, coun-

tries that exhibited an increase in the number of COVID-19 cases per week after the middle of

June and had more than 1,000 COVID-19 cases per 1 million population. (TR) tropical rain

forest; (TS) tropical seasonal forest/savanna; (TE) temperate rain forest; (SD) subtropical des-

ert; (TD) temperate deciduous forest; (WS) woodland/shrubland; (TG) temperate grassland/

desert; (BF) boreal forest; (TU) tundra.

(TIF)

S2 Fig. Relative importance of explanatory factors in the random forest models explaining

the geographical pattern of the cumulative number of COVID-19 cases. Temp, mean tem-

perature; Prec, mean monthly precipitation; Pop dens, population density; Visitor, relative

amount of foreign visitors per population; GDP, gross domestic product per person; BCG,

BCG vaccination effect as defined by the first PCA axis summarizing five variables related to

BCG vaccination (see the Methods section for details); Malaria, relative malaria incidence;

Age, relative proportion of the population aged�65 years; First cases, number of days from

case onset.

(TIF)

S3 Fig. Results of additional analyses using the number of conducted COVID-19 tests

(sampling effort) as a covariate in the model. Temp, mean temperature; Prec, mean monthly

precipitation; Pop dens, population density; Visitor, relative amount of foreign visitors per

population; GDP, gross domestic product per person; BCG, BCG vaccination effect as defined

by the first PCA axis summarizing five variables related to BCG vaccination (see the Methods

section for details); Malaria, relative malaria incidence; Age, relative proportion of the popula-

tion aged�65 years; First cases, number of days from case onset; Test, number of tests.

(TIF)

S1 Appendix. List of data sources for the COVID-19 cases numbers.

(DOCX)
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S1 Video. https://youtu.be/ZIDMtbek-48.

(TXT)

S2 Video. https://youtu.be/KlnpUY51D3k.

(TXT)

S3 Video. https://youtu.be/UQViOcMFhNk.

(TXT)

S4 Video. https://youtu.be/3DpjGoTrk-E.

(TXT)
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