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Abstract: This study analyzed the morbidity and mortality rates of the coronavirus disease (COVID-19)
pandemic in different prefectures of Japan. Under the constraint that daily maximum confirmed
deaths and daily maximum cases should exceed 4 and 10, respectively, 14 prefectures were included,
and cofactors affecting the morbidity and mortality rates were evaluated. In particular, the number
of confirmed deaths was assessed, excluding cases of nosocomial infections and nursing home
patients. The correlations between the morbidity and mortality rates and population density were
statistically significant (p-value < 0.05). In addition, the percentage of elderly population was also
found to be non-negligible. Among weather parameters, the maximum temperature and absolute
humidity averaged over the duration were found to be in modest correlation with the morbidity and
mortality rates. Lower morbidity and mortality rates were observed for higher temperature and
absolute humidity. Multivariate linear regression considering these factors showed that the adjusted
determination coefficient for the confirmed cases was 0.693 in terms of population density, elderly
percentage, and maximum absolute humidity (p-value < 0.01). These findings could be useful for
intervention planning during future pandemics, including a potential second COVID-19 outbreak.
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1. Introduction

The COVID-19 outbreak was first reported in China in 2019 [1,2] and spread worldwide in early
2020. Japan declared a state of emergency in seven (of 47) prefectures on 7 April 2020 and extended it
to all prefectures on 13 April 2020. The state of emergency was withdrawn on 25 May 2020. During this
state of emergency, unlike many other countries where city lockdowns were enforced, in Japan, citizens
self-isolated. The mortality rate (per population) in Japan is relatively low compared to the global
rate; the total number of confirmed deaths in Japan is 846 (25 May 2020), corresponding to 6.72 per
million people [3]. Although a straightforward comparison is infeasible, this number is smaller than
that of many other countries with the same order of magnitude of population: 541, 504, 435, and 295 in
Italy, the United Kingdom, France, and the United States, respectively, but larger than 5.18 and 4.0 in
Indonesia and Australia, respectively (25 July 2020).

An additional difficulty in understanding the morbidity rate is the unreliability of the diagnosis of
COVID-19. The number of polymerase chain reaction (PCR) tests, a simple and cost-effective method,
is limited in Japan, partly because of its reliability. Therefore, chest CT is used for a fast-track, highly
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accurate diagnosis [4]. Some patients do not exhibit any common pandemic symptoms [5], thereby
complicating morbidity rate assessment in different areas (e.g., population composition).

Morbidity and mortality statistics have been updated every day in each prefecture in Japan,
which provides a good opportunity for local studies. A notable feature of Japan is that no medical
collapse has been reported. In addition, due to the health insurance system, free medical care for
COVID-19 has been offered. Thus, the reliability of the mortality rate is more accurate than that of the
morbidity rate, because patients with weak or mild symptoms may not be tested. However, to avoid
nosocomial infections and medical resource shortages, it was suggested that people with specific
symptoms (e.g., fever with temperature >37.5 ◦C for no more than four consecutive days) stay home
and avoid seeking medical attention, unless they had been in close contact with an infected person(s) or
had recently visited foreign countries. Such a policy may result in longer latency in the reported cases.

In general, coronaviruses are considered to spread mainly by respiratory droplets and contact
via droplets [6]. Droplets tend to fall to the ground close to the infected host. Droplet transmission
is typically limited to short distances, generally less than 2 m. There exist some hypotheses about
transmission due to airborne transmission that remain in flight for one hour or longer [7]. For both
mechanisms, the ambient condition potentially influences the duration of droplet and airborne spread.
Several co-factors potentially influence COVID-19 morbidity/mortality rates [8–14]); among them,
ambient conditions have been considered here.

The effect of ambient temperature on the mortality was discussed in Wuhan [8]. Positive and
negative associations were found between daily COVID-19 death counts and daily temperature
difference and absolute humidity, respectively. The effect of high temperature and humidity
on the transmission of COVID-19 was discussed using relative humidity as a measure [9].
Their finding suggested that high temperature and humidity may suppress COVID transmission.
Furthermore, the effect of weather on COVID-19 cases employing a case in Jakarta was presented
in [10]. They reported that only average temperature is correlated with the pandemic spread. The effect
of ambient temperature on the confirmed cases was discussed in more than 100 Chinese cities, and it
was concluded that there is no evidence supporting that COVID-19 case counts would decline when
the weather becomes warmer [12]. The effect of ambient temperature and absolute humidity on the
confirmed cases was investigated in cities in China, and the researchers commented that the epidemic
might gradually ease partially due to rising temperatures [13]. Instead, no correlation with UV and
temperature on the transmission of COVID-19 was reported in [15].

Following Chinese studies, case studies in different countries have been reported. Briz-Redón
and Serrano-Aroca [16] evaluated the spatiotemporal analysis of temperature in the cases of early
COVID-19 evolution in Spain. Pirouz et al. [17] discussed the correlation between daily confirmed
cases and temperature, humidity, and velocity with multivariate analysis in Italy. Application of
neural networks for its estimation is also discussed in [18]. A similar attempt has been made in
Oslo, Norway [19]. Recent studies have confirmed the effect of temperature and relative humidity on
morbidity rates in Brazil [20,21]. From these studies, it is difficult to derive a consistent conclusion on
the effect of the weather on the spread of COVID-19. Studies of influenza suggested the importance of
ambient conditions for its spread: lower spread for higher humidity (e.g., [22,23]).

Studies with wider scopes included global data analysis, discussing how temperature and humidity
are correlated with the infection and fatality rates of the COVID-19 pandemic [24,25]. The region of
interest is wide (country level) in these studies, and thus it is not directly applicable to the ruling or
regulation. In addition, some modeling studies have been proposed. However, parameter setting is
not easy for this type of novel virus spread [14,26]; in most modeling studies, the parameters relating
to the weather or population cannot be given explicitly. Instead, the effect of population density on the
spreading effect of the epidemic has been discussed under some assumptions [27].

Nevertheless, none of the aforementioned research and modeling studies simultaneously
considered the impact of population density and ambient conditions. A question that arises here
is To what extent do ambient conditions and population density influence morbidity and mortality
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rates in different cities? Unlike the aforementioned studies, a major feature of Japan is the relative
homogeneity of the health insurance and care system without medical collapse during this pandemic.
In addition, the difference in household wealth is relatively small in Japan [28]. The average annual
salary per population is USD 34,400 to 39,900 (USD 1 = JPY 107). The standard deviation of household
consumption in each prefecture is 10% or less [28]. With all these demographic factors, the data sample
discussed here provides a convenient case study with less bias. In a recent study [29], we examined
the time course of the morbidity rate of different prefectures in Japan and found that the durations of
the spread and decay stages can be characterized by population density, temperature, and absolute
humidity. An additional factor would be the ratio of the elderly to the entire population; in Japan,
this ratio reached 28.4% [30], which is ranked the highest globally.

This novel study aimed to evaluate the effect of ambient temperature and humidity on mortality
and morbidity rates in different prefectures in Japan. Additionally, it considered the influence of
population density and composition. To the best of the authors’ knowledge, this is the first study to
highlight the environmental factors’ effect during COVID-19 in Japan. The model of Japan provides an
interesting case study for different factors, as the medical service and social reaction is almost uniform
nationwide and high-quality data were recorded properly. If the correlation of the pandemic with
population density and ambient conditions is significant, the findings will be useful to set the level
and duration for a strict lockdown period for each city considering the environmental factors and in
planning future pandemic measures.

The organization of this study is as follows. In Section 2, the data sources of COVID-19 in
Japan and weather data are mentioned. Then, the statistical method for data processing is explained
briefly. In Section 3, effect of population density, elderly population, and ambient conditions on
the morbidity/mortality rates are evaluated statistically. Based on the evaluation, multivariate
linear regression has been conducted to estimate the morbidity/mortality rate from these parameters.
In Section 4, provides discussion of the results including the limitation. The conclusion is given in
Section 5.

2. Material and Methods

2.1. Data Source

In this study, we used three datasets. The first involved the confirmed daily positive cases and
deaths in each prefecture [31]. This dataset is based on the report by the Ministry of Health Labor
and Welfare [32]. We used time-integrated data until 25 May 2020—when the emergency state was
terminated. According to the dataset, 16 prefectures had confirmed total deaths and daily positive
counts higher than 4 and 10, respectively. These prefectures were defined as infected. The remaining
prefectures were excluded due to a lower number of infected cases, which is simply because of the
self-isolation, including the discouragement from moving to other prefectures after the declaration.
In Japan, to avoid nosocomial infections and medical resource shortages, it was suggested that people
with symptoms (e.g., fever >37.5 ◦C for no more than four consecutive days) stay home and not
seek immediate medical attention unless they had been in close contact with infected people or had
recently visited a foreign country. Some patients have been reported to be asymptomatic [5], making
the statistical study of COVID-19 more complex. Then, the positive rate of the test varied from 2.2%
to 34.8% for different prefectures. Unlike other diseases, the number of confirmed cases/deaths are
counted even when patients are found to be infected after their death. For this data collection, we use
the mortality rate in this study as a metric rather than the case fatality rate.

For comparison, two sets of data were prepared: (1) the number of confirmed deaths excluding
and including nosocomial/nursing facility infection, and (2) the total confirmed positive cases. This is
to avoid the data of cluster infection for high-risk groups, resulting in a higher possibility of death.

Note that among some of the 16 selected prefectures, as shown in Figure 1, the number of victims
due to nosocomial/nursing facility infection was not always reported. Thus, such prefectures were
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excluded from the comparisons. Among others, the area of Hokkaido is one to two magnitudes
larger than the other prefectures. Thus, several peaks in the number of cases are observed in different
cities with larger distances between them than those in other adjacent prefectures. In the Gunma
prefecture, three confirmed deaths occurred, except for in Isezaki City, where substantial nosocomial
infections were reported (15 victims). Thus, we used data from the Gunma prefecture, excluding
Isezaki City, for accurate comparison of mortality rates. In addition, Saitama was also excluded
since it did not report humidity data (see below for the third dataset). Two prefectures with unclear
nosocomial/nursing facility infections were also excluded.
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The second dataset comprises the population and the area of the prefectures. Based on the
evidence that more than 90% of the victims are older than 60 years and because the retirement age in
Japan is 65, which may potentially influence morbidity rates, we set the threshold as 65. For a total of
14 prefectures and one city, the first and second datasets are listed in Table 1. Note that the rationale for
choosing 25 May as a reference date is the end of state of emergency, and then, the daily confirmed
death over Japan was 20 (128 million population); the daily confirmed death was smaller than 100 for
one month after that.

The third dataset comprises weather data for each prefecture. They are extracted from the weather
reports generated by the Japan Meteorological Agency [33]. In our previous study, we had studied
the correlation between environmental conditions and the duration of the pandemic from its spread
to decay periods [29]. We extended this investigation to the prefectures defined in Table 1. We then
estimated the start and end dates of the spread and decay stages, as defined in Table 2. To validate the
effect of ambient factors in different phases of the pandemic, we computed ambient features for three
time frames: during the spreading stage DS (from TSS to TSE), during the decaying stage DD (from TDS
to TDE), and during both stages (from TSS to TDE).
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Table 1. Population and population density of 14 prefectures, in addition to the percentage of the
elderly population, where confirmed deaths and daily confirmed positives are larger than 4 and 10,
respectively. The data of confirmed cases and deaths were counted until 25 May 2020.

Prefectures Population
(×1000)

Density
(capita/km2)

Total
Cases

Confirmed
Deaths

Confirmed
Deaths
(Ex.) †

Cases/1M
Elderly

(>65 years)
(%)

Aichi 7552 1460.0 507 34 16 67.1 25.1
Chiba 6259 1217.4 904 44 27 144.4 27.8

Fukuoka 5104 1024.8 672 25 20 131.7 27.9
Gifu 1987 187.3 150 7 7 75.5 30.1

Gunma 1942 304.6 149 19 19 76.7 29.9
Hyogo 5466 650.4 699 40 33 127.9 29.1
Ibaraki 2860 470.4 168 10 10 58.7 29.5

Ishikawa 1138 271.7 296 24 6 260.1 29.6
Kanagawa 9198 3807.5 1336 76 59 145.2 25.3

Kyoto 2583 560.1 358 15 15 138.6 29.2
Okinawa 1453 637.5 81 6 6 55.7 22.2

Osaka 8809 4631.0 1781 80 45 202.2 27.6
Tokyo 13,921 6354.8 5170 292 210 371.4 23.1

Toyama 1044 245.6 227 21 10 217.4 32.3
† Excluding nosocomial infection in confirmed deaths.

Table 2. Starting and terminating dates of the spread and decay stages of COVID-19 in different
prefectures in Japan. TSS (TDS) and TSE (TDE) denote the start and end dates for the spread (decay)
stages of the pandemic.

Prefectures
Spread Stage Decay Stage

TSS TSE TDS TDE

Aichi 22-February 30-March 1-April 27-April
Chiba 19-March 2-April 13-April 5-May

Fukuoka 22-March 1-April 9-April 27-April
Gifu 25-March 4-April 6-April 17-April

Gunma 25-March 5-April 9-April 22-April
Hyogo 19-March 4-April 7-April 4-May
Ibaraki 16-March 28-March 8-April 23-April

Ishikawa 24-March 3-April 8-April 8-May
Kanagawa 19-March 3-April 11-April 19-May

Kyoto 16-March 2-April 5-April 9-May
Okinawa 28-March 3-April 10-April 25-April

Osaka 18-March 6-April 13-April 6-May
Tokyo 17-March 3-April 10-April 7-May

Toyama 1-April 13-April 18-April 30-April

To consider the mortality rate, which is affected by many factors, it should be noted that the
metrics are averaged over the duration of the spread stage, decay stage, and the entire period.
The duration-averaged values of temperature, absolute humidity, wind velocity, and daylight hours
were calculated from the data available from the internet site mentioned above, as listed in Table 3.
The latitude of Japan considered here is N 33◦36′ (Fukuoka) to N 36◦35′ (Ishikawa), except for Okinawa
of N 26◦12′), and thus, total solar radiation may be marginally influenced with this measure.
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Table 3. Duration-averaged temperature (T), absolute humidity (H), wind velocity (Vair), and daylight
hours (DL) in each prefecture. DS and DD represent time frames during the spread and decay stages
of the pandemic, respectively, as listed in Table 2. Tave, Tmax, and Tmin represent the daily average,
maximum, and minimum temperatures, respectively. Have, Hmax, and Hmin represent the daily average,
maximum, and minimum absolute humidity values, respectively. Vair represents the daily averaged
wind velocity.

Spread Duration (DS)

Prefectures Tave Tmax Tmin Tdiff Have Hmax Hmin Hdiff Vair DL

Aichi 10.1 14.8 6.0 8.8 5.9 7.9 4.4 3.5 3.3 5.3
Chiba 12.4 16.1 8.1 8.1 6.6 9.5 4.6 4.9 4.5 4.5

Fukuoka 14.2 17.5 11.3 6.2 8.8 11.0 6.9 4.1 3.1 3.5
Gifu 12.0 16.4 7.7 8.7 6.7 8.4 4.9 3.5 2.7 4.2

Gunma 10.6 15.3 5.4 9.9 5.7 7.5 4.6 3.0 2.6 4.4
Hyogo 12.7 16.4 9.1 7.3 7.2 9.6 5.3 4.2 3.7 5.1
Ibaraki 10.3 17.1 3.4 13.7 5.7 8.5 3.7 4.8 2.7 7.0

Ishikawa 9.9 14.7 5.7 9.0 5.9 7.2 4.1 3.1 4.6 4.4
Kanagawa 12.4 16.7 8.0 8.7 6.8 9.7 4.7 5.0 4.4 4.6

Kyoto 11.5 16.6 6.8 9.8 6.4 8.6 4.7 3.9 2.4 4.6
Okinawa 21.3 24.0 18.8 5.1 14.7 17.4 12.4 5.0 4.3 1.9

Osaka 12.7 17.0 8.9 8.1 6.7 8.9 5.1 3.9 2.6 5.1
Tokyo 11.7 16.7 6.7 10.0 6.4 9.3 4.5 4.8 3.3 5.4

Toyama 9.7 14.6 5.2 9.4 6.3 7.7 4.7 3.0 3.2 4.4

Decay Duration (DD)

Tave Tmax Tmin Tdiff Have Hmax Hmin Hdiff Vair DL

Aichi 13.0 18.3 8.6 9.7 6.5 8.4 4.9 3.5 3.9 6.1
Chiba 15.1 19.1 11.2 7.8 8.4 10.3 6.4 3.9 4.4 4.6

Fukuoka 14.0 17.5 10.9 6.6 7.3 9.4 5.7 3.7 3.6 4.7
Gifu 12.6 18.2 7.7 10.6 5.1 6.6 3.6 3.0 3.5 6.5

Gunma 11.5 16.3 7.2 9.1 6.3 8.4 4.9 3.4 3.2 5.2
Hyogo 15.5 19.0 12.4 6.6 8.1 9.5 6.0 3.5 4.0 5.3
Ibaraki 10.8 15.6 6.4 9.1 6.5 8.2 4.9 3.3 3.5 4.7

Ishikawa 13.1 17.3 9.2 8.1 7.0 8.7 5.4 3.3 4.4 4.5
Kanagawa 16.6 20.7 13.0 7.7 9.8 11.7 7.7 4.0 3.9 4.9

Kyoto 14.7 20.1 10.0 10.1 7.1 9.0 5.3 3.7 2.5 5.0
Okinawa 19.8 22.1 17.6 4.5 11.8 14.1 10.0 4.0 5.0 3.2

Osaka 16.2 20.6 12.3 8.3 8.1 10.2 6.3 3.9 2.7 5.3
Tokyo 14.4 19.2 9.9 9.3 8.6 10.7 6.7 3.9 3.2 5.0

Toyama 12.1 17.6 7.7 9.9 7.5 9.1 5.8 3.3 3.7 3.9

All Duration, from TSS to TDE

Tave Tmax Tmin Tdiff Have Hmax Hmin Hdiff Vair DL

Aichi 11.3 16.2 7.1 6.2 8.2 4.6 3.5 11.3 3.5 5.5
Chiba 13.8 17.8 9.6 7.3 9.7 5.4 4.3 13.8 4.3 4.9

Fukuoka 14.9 19.0 11.4 8.6 10.8 6.8 3.9 14.9 3.3 5.5
Gifu 12.2 17.2 7.7 5.8 7.4 4.2 3.3 12.2 3.2 5.5

Gunma 11.1 16.0 6.2 5.9 7.7 4.6 3.1 11.1 2.9 5.2
Hyogo 14.2 17.8 10.9 7.5 9.3 5.5 3.8 14.2 3.8 5.6
Ibaraki 10.4 15.8 4.8 6.2 8.3 4.4 3.9 10.4 2.9 5.5

Ishikawa 12.1 16.3 8.0 6.6 8.1 4.9 3.2 12.1 4.2 4.7
Kanagawa 15.1 19.4 11.2 8.6 10.8 6.6 4.3 15.1 4.0 5.0

Kyoto 13.6 18.9 8.8 6.8 8.8 5.0 3.8 13.6 2.4 4.9
Okinawa 20.1 22.4 17.9 12.5 14.8 10.6 4.1 20.1 4.6 2.5

Osaka 14.3 18.6 10.4 7.2 9.3 5.6 3.7 14.3 2.6 5.4
Tokyo 13.3 18.3 8.5 7.6 9.9 5.7 4.2 13.3 3.2 5.3

Toyama 10.9 16.1 6.2 6.8 8.4 5.2 3.2 10.9 3.4 4.3
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2.2. Statistical Analysis

A statistical study was conducted to analyze the correlation of different factors on both mortality
and morbidity rates. The software JMP (SAS Institute, Cary, NC, USA) was used in this study. In order
to specify dominant factors influencing the rates, p-value was used. We determined the pairwise
correlations by calculating the Spearman’s rank correlation between the number of confirmed positive
cases, confirmed death cases, and different environmental and demographic parameters. Correlation
matrix with partial correlation probability and CI of correlation were calculated. After that, with the
same software, multivariate analysis [34] was conducted in terms of the factors. We considered linear
regression for data least-squares fitting after considering multicollinearity. Statistical significance was
accepted at p < 0.05.

3. Results

3.1. Effect of Population Density and Elderly Population

Figure 2 shows the relationship between confirmed positive cases and confirmed deaths, including
and excluding nosocomial infections and nursing home patients. A modest correlation was observed
between positive cases per million and population density (R2 = 0.394), whereas a slight and mild
correlation was observed for confirmed deaths (R2 = 0.097) and excluding nosocomial infection
(R2 = 0.259). This result suggests that population density should be considered as a factor that
implicitly represents social distancing, as is similar to our previous study that discussed the pandemic’s
duration [29].

When the cases and deaths for the elderly population were considered, the same tendency was
observed; R2 = 0.363 for cases, and R2 = 0.078 and R2 = 0.210 for deaths with and without nosocomial
infections (not shown to avoid repetition), respectively. Instead, as shown in Figure 3, the morbidity
and mortality rates normalized by population density are modestly correlated with the percentage of
the elderly, especially for confirmed deaths excluding nosocomial infections (R2 = 0.482). This factor is
thus considered in the multivariate analysis study presented later.
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3.2. Effect of Ambient Conditions

Several ambient factors potentially influence morbidity and mortality rates. Our study considered
temperature and absolute humidity. Most previous studies reported the maximum, average,
or difference (diurnal variation range) of ambient temperature (e.g., see [8] and [35]). Our study
also considered the minimum temperature. Recent reports on influenza suggest the importance of
absolute humidity rather than its relative value [22,23]; however, we considered the maximum, average,
minimum, and difference values of absolute humidity as parameters. The daily average wind velocity
and daylight hours were also considered. Regression analysis was conducted for all metrics averaged
over the duration of the spread and decay stages and the total duration.

Table 4 lists the coefficients of determination for different metrics. For most parameters, the averaged
values over the total stage provided the highest correlation rather than those over the other two durations.
As an example, Figure 4 shows the correlation between the number of confirmed positive cases and
fatality normalized by the population density and the daily maximum temperature and diurnal absolute
humidity. A moderate correlation was observed among the daily maximum temperature, diurnal
absolute humidity, and cases per population density. Table 5 lists the Spearman’s rank correlation for
different parameters. The ambient factor was normalized by population density as aforementioned.
A moderate correlation was also observed with the daily maximum temperature, daily maximum,
and diurnal absolute humidity and percentage of elderly population. Correlation was weak with wind
velocity and daylight hours.

Int. J. Environ. Res. Public Health 2020, 17, x 8 of 15 

 

Table 4 lists the coefficients of determination for different metrics. For most parameters, the 
averaged values over the total stage provided the highest correlation rather than those over the other 
two durations. As an example, Figure 4 shows the correlation between the number of confirmed 
positive cases and fatality normalized by the population density and the daily maximum temperature 
and diurnal absolute humidity. A moderate correlation was observed among the daily maximum 
temperature, diurnal absolute humidity, and cases per population density. Table 5 lists the 
Spearman’s rank correlation for different parameters. The ambient factor was normalized by 
population density as aforementioned. A moderate correlation was also observed with the daily 
maximum temperature, daily maximum, and diurnal absolute humidity and percentage of elderly 
population. Correlation was weak with wind velocity and daylight hours. 

 
Figure 4. Correlation between the number of confirmed positive cases and fatality normalized by the 
population density and (a–c) the daily maximum temperature and (d–f) diurnal absolute humidity 
averaged over total duration. The number of (a,d) positive cases, confirmed deaths (b,e) including 
and (c,f) excluding those caused by nosocomial infection. 

  

Figure 4. Correlation between the number of confirmed positive cases and fatality normalized by the
population density and (a–c) the daily maximum temperature and (d–f) diurnal absolute humidity
averaged over total duration. The number of (a,d) positive cases, confirmed deaths (b,e) including and
(c,f) excluding those caused by nosocomial infection.
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Table 4. Coefficient of determination for different metrics: (i) cases, (ii) death, (iii) death excluding
nosocomial infection, (iv) cases normalized by density, (v) death normalized density, and (vi) death
excluding nosocomial infection normalized by population density.

(i) (ii) (iii) (iv) (v) (vi)

Population density 0.393 0.097 0.259 — — —
Elderly density 0.363 0.078 0.210 0.225 0.185 0.295

Elderly percentage 0.009 0.014 0.007 0.405 0.360 0.482

Tave DS 0.073 0.143 0.041 0.151 0.157 0.122
DD 0.000 0.035 0.011 0.164 0.173 0.274

Total 0.009 0.075 0.020 0.158 0.173 0.216

Tmax DS 0.089 0.161 0.035 0.175 0.181 0.130
DD 0.008 0.019 0.001 0.143 0.166 0.229

Total 0.003 0.081 0.006 0.202 0.229 0.242

Tmin DS 0.053 0.114 0.054 0.105 0.116 0.112
DD 0.001 0.041 0.019 0.147 0.147 0.246

Total 0.013 0.069 0.034 0.122 0.134 0.192

Tdiff DS 0.007 0.027 0.047 0.015 0.021 0.043
DD 0.026 0.042 0.048 0.071 0.055 0.128

Total 0.026 0.042 0.078 0.036 0.036 0.101

Have DS 0.076 0.091 0.043 0.055 0.055 0.048
DD 0.017 0.002 0.019 0.099 0.061 0.142

Total 0.006 0.026 0.004 0.095 0.080 0.127

Hmax DS 0.069 0.123 0.032 0.152 0.149 0.131
DD 0.016 0.001 0.019 0.127 0.081 0.160

Total 0.005 0.038 0.003 0.160 0.138 0.191

Hmin DS 0.086 0.084 0.036 0.044 0.039 0.025
DD 0.011 0.002 0.016 0.089 0.051 0.117

Total 0.011 0.024 0.004 0.079 0.060 0.089

Hdiff DS 0.001 0.107 0.002 0.463 0.488 0.546
DD 0.052 0.001 0.031 0.347 0.277 0.384

Total 0.006 0.074 0.000 0.485 0.509 0.635

Vair DS 0.034 0.058 0.007 0.020 0.022 0.044
DD 0.035 0.000 0.091 0.023 0.027 0.003

Total 0.001 0.008 0.032 0.015 0.017 0.015

DL DS 0.023 0.007 0.012 0.012 0.010 0.014
DD 0.021 0.077 0.025 0.045 0.086 0.018

Total 0.008 0.007 0.000 0.035 0.053 0.029
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Table 5. Spearman’s rank correlation for cases normalized by density, death normalized density,
and death, excluding nosocomial infection normalized by population density.

Parameters Cases/Density Deaths/Density Deaths/Density (Ex.)

p p-value p p-value p p-value

Elderly percentage 0.864 <0.0001 0.824 <0.001 0.842 <0.001

Tave −0.456 0.101 −0.489 0.076 −0.456 0.101 0.101
−0.565 <0.05 −0.539 <0.05 −0.543 <0.05 <0.005
−0.503 0.067 −0.543 <0.05 −0.508 0.064 0.064

Tmax −0.526 0.050 −0.551 <0.05 −0.471 0.089 0.089
−0.631 <0.05 −0.574 <0.05 −0.560 <0.05 <0.005
Total −0.475 0.086 −0.535 <0.05 −0.473 0.088

Tmin DS −0.385 0.175 −0.446 0.110 −0.442 0.114
DD −0.524 0.055 −0.506 0.065 −0.511 0.062

Total −0.429 0.126 −0.477 0.084 −0.453 0.104

Tdiff DS 0.234 0.422 0.280 0.333 0.311 0.280
DD 0.317 0.269 0.273 0.345 0.289 0.317

Total 0.315 0.273 0.326 0.255 0.375 0.187

Have DS −0.314 0.275 −0.353 0.215 −0.331 0.248
DD −0.560 <0.05 −0.465 0.094 −0.469 0.091

Total −0.496 0.071 −0.476 0.085 −0.450 0.107

Hmax DS −0.578 <0.05 −0.569 <0.05 −0.534 <0.05
DD −0.570 <0.05 −0.497 0.070 −0.488 0.076

Total −0.601 <0.05 −0.579 <0.05 −0.542 <0.05

Hmin DS −0.080 0.787 −0.113 0.701 −0.060 0.839
DD −0.532 0.050 −0.439 0.116 −0.444 0.112

Total −0.495 0.072 −0.493 0.073 −0.453 0.104

Hdiff DS −0.665 <0.01 −0.583 <0.05 −0.579 <0.05
DD −0.777 <0.005 −0.736 <0.005 −0.699 <0.01

Total −0.669 <0.01 −0.636 <0.05 −0.623 <0.05

Vair DS −0.160 0.584 −0.081 0.782 −0.187 0.523
DD −0.024 0.935 0.077 0.794 −0.029 0.923

Total −0.108 0.714 −0.007 0.982 −0.103 0.725

DL DS −0.464 0.095 −0.411 0.144 −0.446 0.110
DD −0.169 0.563 −0.222 0.446 −0.231 0.427

Total −0.191 0.513 −0.301 0.296 −0.319 0.267

3.3. Multivariate Linear Regression

In this subsection, the morbidity/mortality rates are estimated in terms of different factors.
In Section 3.1, population density and percentage of the elderly were found to be modest, at least
non-negligible factors for multivariate analysis [34]. In Section 3.2, maximum temperature and absolute
humidity difference were found to be relatively important. No consistency was observed between
mortality and morbidity rates. The data in Ishikawa and Toyama prefectures were considered as
outliers from hierarchical clustering (see also [29]).

The difference in absolute humidity is derived from the maximum and minimum absolute
humidity; at least two parameters are needed. In addition, the maximum temperature is also related to
the maximum absolute humidity. In terms of variance inflation factors (VIFs), the multicollinearity
was evaluated. The threshold value to differentiate small from large is generally taken as 10 [36].
From this analysis, a set of population density, elderly percentage, and absolute humidity provided
estimation without multicollinearity: VIF < 3.78 for spread duration, VIF < 3.23 for decay duration,
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and VIF < 3.68 for total duration. Note that the maximum ambient temperature was excluded due to
strong correlation with absolute humidity.

Figure 5 shows the multivariate linear regression of cases and deaths per million. Table 6 shows
the determination coefficients for the three durations. As shown in Figure 5, the predicted and actual
data are of good correlation with the averaged value over three stages. The highest contribution rates
were the population density in the multivariate analysis (74.4%, 80.0%, and 84.5% in the cases per
million, deaths per million including, and excluding nosocomial infection, respectively).
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deaths (b) including and (c) excluding those caused by nosocomial infection.

Table 6. Coefficients of determination and adjusted R2 values for multivariate linear regression.

Cases Deaths Deaths (Ex.) †

R2 adj. R2 p-Value R2 adj. R2 p-Value R2 adj. R2 p-Value

DS 0.777 0.693 <0.01 0.659 0.532 <0.05 0.384 0.153 0.251
DD 0.773 0.688 <0.01 0.653 0.523 <0.05 0.383 0.151 0.253

Total 0.776 0.692 <0.01 0.662 0.536 <0.05 0.386 0.155 0.249
† Excluding nosocomial infection in confirmed deaths.
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4. Discussion

In this study, we analyzed the morbidity and mortality rates in different prefectures in Japan,
where the number of confirmed deaths and daily confirmed positive counts were higher than
4 and 10, respectively. A major feature of Japan was the relative homogeneity of the health insurance
and care system without medical collapse during this pandemic, in addition to household wealth.
The Japanese strategy included identifying infection clusters at an early stage, to the best possible
extent. However, the criteria for conducting tests (diagnosis) on potential patients may not be uniform
in different prefectures; some patients may exhibit weak symptoms. Thus, after retracting the state of
emergency on 25 May 2020, we processed the data for morbidity and mortality rates in 14 prefectures.

The morbidity/mortality rates were then shown to be proportional to the population density.
In previous studies, this factor was not considered [12] nor was correlation between different cities
considered [17]. After excluding the number of confirmed deaths in cluster infections related to hospital
and care services, we observed modest correlation among different cities in terms of population density.
It is worth noting that no strict closure was applied in Japan. Next, we found a good correlation
between population density and the spread of COVID-19. This finding implicitly represents social
distancing. In Tokyo and Osaka, which are considered among cities with the highest population
densities worldwide, infection is potentially more likely to occur compared to other less dense regions.
However, this may not be the case reported in other countries where strict lockdown was implemented.
In Wuhan (China), the duration of the decaying stage was only 10 days, with almost no contact during
the period. However, such strict lockdown may not be allowed in most countries to avoid severe
social and economic damage. Therefore, this study demonstrates that population density should
be considered for avoiding potential spread in future pandemics. Moreover, this finding may be
useful to improve the simulation model of epidemic transmission [37,38]. The maximum temperature
and absolute humidity differences were the dominant ambient factors characterizing morbidity and
mortality rates. As shown in Figure 4, cases and deaths in Ishikawa and Toyama prefectures have a
different tendency than that in other prefectures—as COVID-19 occurred in a very limited area in these
prefectures. In general, for higher temperature and absolute humidity, the morbidity and mortality rates
were decreased. For example, the population density of Hyogo (650.4 capita/km2) is nearly equal to
that of Okinawa (637.5 capita/km2). However, the total cases in Hyogo were 8.6 times that of Okinawa.
The daily maximum temperature in Hyogo was 7 ◦C lower than in Okinawa. This relationship can be
observed in other prefectures but not all due to mild correlation with weather condition. The reason for
higher correlation with absolute humidity difference is unclear. However, one potential reason would
be the relatively small variation in a limited period (from mid-March to mid-May). Further study of
key factors would be needed. The ambient conditions in Okinawa prefecture differ the most from those
of other prefectures in Japan. If the data of Okinawa are excluded, the correlation of confirmed cases
and deaths improved. In particular, the total cases and deaths normalized by population have a mild
correlation with the maximum temperature and absolute humidity averaged over spread duration
(from 0.13 < R2 < 0.18 to 0.37 < R2 < 0.55).

The effect of ambient conditions on the morbidity and mortality rates was shown to be modest over
multiple prefecture studies. As mentioned in the introduction, this was a controversial COVID-19 issue.
Our study hypothesized that this may be caused by population density, which was not considered in
previous studies, as well as the uniformity of the policy, health insurance system, household wealth, etc.

The morbidity and mortality rates were roughly derived via multivariate analysis. Note that the
ambient parameters are cross-correlated with each other, and thus further research and investigation
are needed. Their adjusted-R2 was almost the same; 0.69 (p < 0.01) for positive cases, and those for
confirmed deaths including and excluding nosocomial infection were 0.53 (p < 0.05) and 0.15 (p = 0.25),
respectively. This statistical finding may be improved for modeling studies. The correlation with the
mortality rate excluding nosocomial infection was relatively low, suggesting that nosocomial infection
would be a part of COVID-19 transmission at least in Japan.
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Unlike previous studies that discussed the correlation with ambient condition in each city
(e.g., [17]), our study explores common factors over 14 prefectures, resulting in lower p-value as
compared to such studies. In such cases, the uncertainty of measured ambient condition would also be
another factor to influence the correlation. For example, no correlation with ambient condition was
observed in the analysis of 122 cities in China [12].

Note that according to the record of the Ministry of Health in Japan, no pandemic has been reported
in the last 50 years [39]. Thus, a comparison with other epidemics is infeasible. Common influenza
has been recorded, but only at fixed points (hospitals), making proper comparison difficult [39].
However, the finding of this study that presents the effect of population density and ambient conditions
may be useful when considering measures for potential future pandemics.

5. Conclusions

A mild correlation was found of mortality and morbidity rates with the population density
and the percentage of the elderly population, in addition to maximum absolute humidity averaged
over the spread stage under Japanese policy. The multivariate linear regression provided adjusted
coefficients of determination, which were 0.69 and 0.53 (p < 0.05) for positive cases and confirmed
deaths, respectively. Our results suggested that with population and weather data, we can estimate
the number of cases and deaths, at least in Japanese cities. Although the date and duration of the
pandemic were different even in Japan, our estimation presented mild correlation, providing useful
information for the planning of policy and medical resources. With our findings, more customized
guidelines can be developed, specific to where and when different measures can be applied to restrict
the adverse effects caused by a potential pandemic in the future, including a second wave of COVID-19.
The limitation of this study is that the weather data in different prefectures are similar to each other due
to the limited period (March to May 2020), and thus further data are needed for a general conclusion.
The controversy in previous studies may be potentially caused by the population density and elderly
population percentage, as those were not considered in most studies. Thus, these factors should be
included for proper comparisons with the tendencies of international cities.
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