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S easonality and climate dependency of influenza are well 
established. Suggested mechanisms for the slowdown of 
influenza epidemics in summer months in temperate cli-

mates are related to higher temperature, higher humidity or 
higher solar radiation.1 These 3 characteristics are all associated 
with geographic latitude, a measure that can be determined 
effortlessly and with precision. Another possible explanation for 
the slowdown of influenza epidemics during summer months is 
school closures for summer breaks.2–4

To slow the growth of the current coronavirus disease 2019 
(COVID-19) pandemic, many countries have mandated school 
closures5 and other public health interventions, such as restric-
tions of mass gatherings, social distancing or closure of non
essential businesses. However, it is unclear whether these inter-

ventions, or seasonal changes mediated by climate,6 affect the 
pandemic. We performed an analysis of the current epidemic 
growth in geopolitical areas affected by COVID-19 to determine 
whether epidemic growth was associated with climate, school 
closures or other public health interventions aimed at reducing 
contact rates in the population and thereby reducing transmis-
sion of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), the coronavirus driving the pandemic.7–9

Methods

We designed a prospective cohort study of geopolitical areas 
with documented outbreaks of COVID-19 to determine the asso-
ciation of epidemic growth of COVID-19 during a prespecified 
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ABSTRACT
BACKGROUND: It is unclear whether sea-
sonal changes, school closures or other 
public health interventions will result in 
a slowdown of the current coronavirus 
disease 2019 (COVID-19) pandemic. We 
aimed to determine whether epidemic 
growth is globally associated with cli-
mate or public health interventions 
intended to reduce transmission of 
severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2).

METHODS: We performed a prospective 
cohort study of all 144 geopolitical areas 
worldwide (375 609 cases) with at least 
10 COVID-19 cases and local transmis-
sion by Mar. 20, 2020, excluding China, 
South Korea, Iran and Italy. Using 
weighted random-effects regression, we 

determined the association between 
epidemic growth (expressed as ratios of 
rate ratios [RRR] comparing cumulative 
counts of COVID-19 cases on Mar. 27, 
2020, with cumulative counts on Mar. 20, 
2020) and latitude, temperature, humid-
ity, school closures, restrictions of mass 
gatherings, and measures of social dis-
tancing during an exposure period 
14 days previously (Mar. 7 to 13, 2020).

RESULTS: In univariate analyses, there 
were no associations of epidemic 
growth with latitude and temperature, 
but weak negative associations with rel-
ative humidity (RRR per 10% 0.91, 95% 
confidence interval [CI] 0.85–0.96) and 
absolute humidity (RRR per 5 g/m3 0.92, 
95% CI 0.85–0.99). Strong associations 

were found for restrictions of mass gath-
erings (RRR 0.65, 95% CI 0.53–0.79), 
school closures (RRR 0.63, 95% CI 0.52–
0.78) and measures of social distancing 
(RRR 0.62, 95% CI 0.45–0.85). In a multi-
variable model, there was a strong asso-
ciation with the number of imple-
mented public health interventions (p 
for trend = 0.001), whereas the associa-
tion with absolute humidity was no lon-
ger significant.

INTERPRETATION: Epidemic growth of 
COVID-19 was not associated with lati-
tude and temperature, but may be asso-
ciated weakly with relative or absolute 
humidity. Conversely, public health 
interventions were strongly associated 
with reduced epidemic growth.
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follow-up period (Mar. 21 to Mar. 27, 2020) with characteristics 
ascertained during an exposure period 14 days previously (Mar. 7 
to Mar. 13, 2020). The time lag between exposure and follow-up 
was set to 14 days, to reflect the assumed time between trans-
mission of SARS-CoV-210 and reporting of confirmed COVID-19 
cases (Figure 1).11 Analyses were performed according to a pre-
specified protocol. Results of a preliminary unpublished analysis, 
conducted according to protocol version 1.0, are summarized in 
protocol version 1.2 (available in Appendix 1, at www.cmaj.ca/
lookup/suppl/doi:10.1503/cmaj.200920/-/DC1). An explanation of 
protocol changes is provided in the supplementary methods in 
Appendix 2, available at www.cmaj.ca/lookup/suppl/doi:10.1503​
/cmaj.200920/-/DC1.

Eligibility
We included all geopolitical areas (states for Australia and the 
United States, provinces and territories for Canada, countries 
and overseas territories for the rest of the world) with at least 
10  cases as of Mar. 20, 2020 (reference), and documented local 
transmission according to the World Health Organization’s 
(WHO) Situation Report 61.12 China was excluded as its epidemic 
growth had decelerated and the outbreak appeared to be con-
tained. South Korea, Italy and Iran were excluded as their epi-
demics were fully established, being further ahead on the epi-
demic curve than the rest of the world, with the possibility of 
reaching the hyperendemic state during the follow-up period.

Exposure
The exposure period was prespecified to last from Mar. 7 to 
Mar. 13, 2020 (Figure 1). Geographic latitude was prespecified 
as the primary exposure variable, with mean temperature, 
absolute humidity, school closures, restrictions of mass gath-
erings and measures of social distancing as secondary expos
ure variables. Data on latitude, mean temperature and mean 
relative humidity (to derive absolute humidity) were collected 
for the capital of each geopolitical area, and data on school 
closures, restrictions of mass gatherings and measures of 
social distancing were collected at the level of the geopolitical 
area. Absolute humidity describes the absolute water content 
in g/m3, and relative humidity describes absolute humidity rel-
ative to the maximum possible humidity in percent given the 

current temperature. We gave precedence to absolute humid-
ity over relative humidity, as it was more strongly associated 
with influenza than relative humidity1 and showed less varia-
tion than relative humidity, but included relative humidity as a 
post hoc exposure variable. Mean temperature and humidity 
were calculated for the entire exposure period, deriving arith-
metic means across all available measurement time points 
(median 8 per day, interquartile range [IQR] 8 to 45).13 For 
school closures, restrictions of mass gatherings and measures 
of social distancing, we determined whether they were imple-
mented by a prespecified cut-off, in the middle of the work-
week of the exposure period (Wednesday Mar. 11, 2020).

Outcome
The analysis of confirmed cases11 is complicated by potentially 
dramatic differences in detection and reporting of individuals 
infected with SARS-CoV-2,14 which prevent a meaningful analysis 
of absolute event rates across different countries. Conversely, an 
analysis of epidemic growth,15 which can be expressed in relative 
terms — a rate ratio comparing the current cumulative count of 
reported cases with the cumulative count of cases reported 
1 week earlier — is likely to account for some of the variation in 
detection and reporting. This approach analyzes the slope of the 
cumulative frequency rather than absolute rates, using each geo-
political area as its own comparison (Appendix 2, Figure S1). The 
follow-up period was prespecified to last from Mar. 21 to Mar. 27, 
2020 (Figure 1). The prespecified outcome was epidemic growth, 
defined as the rate ratio comparing the cumulative count of con-
firmed COVID-19 cases at the end of the follow-up period on 
Mar.  27, 2020, with the cumulative count 1 week previously, on 
Mar. 20, 2020 (reference).

Additional covariates
Altitude, gross domestic product (GDP) per capita, health expen-
diture as percent of GDP, life expectancy, percentage of inhabit-
ants aged 65 years or older, the Infectious Disease Vulnerability 
Index,16 urban population density, number of flight passengers 
per capita and closest distance to a country with already estab-
lished epidemic (city of Wuhan, South Korea, Iran, Italy) were 
additional prespecified covariates. Table S1 in Appendix 2 pro-
vides a justification for the choice of these covariates.

Exposure period Follow-up period
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Figure 1: Study design. Δ = difference between day 1 of exposure period and day 1 of follow-up period.
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Data collection
Information on data sources is presented in Appendix 2, Table S1. 
On Mar. 28, 2020, we downloaded data covering the COVID-19 
outbreak until Mar. 27, 2020, from the online interactive dash-
board hosted by the Center for Systems Science and Engineering 
at Johns Hopkins University, Baltimore.11 The dashboard reports 
the cumulative number of cases daily at province level in China; at 
city or county level in Australia, Canada and the US; and at level of 
countries and overseas territories elsewhere.11 The case data 
reported on the dashboard align with the daily WHO situation 
reports.11,12 The data reported at city or county level for Australia, 
Canada and the US were aggregated to state or province level. 
Overseas territories, such as Réunion or Guam, were handled sep-
arately from their home country for the purpose of this study.

Temperature in degrees Celsius (°C) and relative humidity were 
collected for the exposure period of Mar. 7 to Mar. 13, 2020, from a 
publicly accessible meteorological website,13 with absolute humid-
ity calculated from relative humidity and temperature for each 
measurement time point.17 Data on school closures were obtained 
from the United Nations Educational, Scientific and Cultural Org
anization18 and complemented with information on scheduled 
school holidays. Data on school holidays, restrictions of mass gath-
erings and measures of social distancing were obtained by 1 of 
4 investigators (P.J., P.B., D.G. and a research assistant) from official 
school schedules; provisions and press releases of relevant admin-
istrative and governmental bodies; and newspaper articles, and 
checked by at least 1 other investigator (P.J. or P.B.). Data on 
restrictions of mass gatherings and measures of social distancing 
were subsequently verified against timelines reported in the online 
encyclopedia Wikipedia.19 No documents were excluded based on 
language. Team members were able to read documents in English, 
German, Czech, Danish, Dutch, French, Greek, Italian, Portuguese, 
Slovak and Spanish directly. We used Web-based translation ser-
vices for remaining languages. “Social distancing” was defined as 
any measure that attempted to prevent small clusters of 10 individ-
uals or fewer, such as strong recommendations or formal require-
ments of social distancing, closure of sit-in restaurants and bars, or 
closure of nongrocery stores.

We calculated the number of flight passengers per capita from 
published passenger statistics of major airports.20–22 Data on the high-
est urban density in major metropolitan areas of a geopolitical area 
were obtained from Demographia World Urban Areas23 and comple-
mented with data from the US Census.24 We obtained data on 
remaining covariates from the World Bank.25 Latitude, altitude, tem-
perature and humidity were collected for the capital of each 
geopolitical area, and the remaining covariates at the level of the 
geopolitical area. For Ecuador, we collected data for the de facto cap-
ital, Guayaquil.25 The Infectious Disease Vulnerability Index16 was 
available only at country level; therefore, values of the home country 
were assigned to states, provinces and overseas territories. To make 
interpretation of the index more intuitive, we inverted it so that larger 
values indicate higher vulnerability to infectious diseases. All data 
were supplemented with publicly available information for overseas 
territories, states or provinces for the US, Australia and Canada, and 
— in cases where data were missing or implausible in the databases 
used — using the latest available information (Appendix 2, Table S1).

Statistical analysis
We used weighted random-effects regression26 to determine the 
association between the log rate ratio of COVID-19 and exposure 
variables. Rate ratios were calculated as cumulative count of 
confirmed cases in a geopolitical area since the beginning of the 
epidemic as of Mar. 27, divided by the cumulative count of con-
firmed cases since the beginning of the epidemic as of Mar. 20 
(Appendix 2, Figure S1). The observation time was identical 
across all areas. Because the populations in question were large, 
they could be considered equal at both time points and can-
celled out in calculations of rate ratios. A rate ratio of 2 indicates 
that the number of cases in a geopolitical area doubled within 
1 week. As the exposure period of Mar. 7 to Mar. 13 was near ver-
nal equinox, no transformation was necessary to reflect the asso-
ciation of the log rate ratio of COVID-19 with the square of the lat-
itude. Associations were expressed as ratios of rate ratios (RRRs) 
per 400 degrees2 increase in latitude, 5°C increase in tempera-
ture, 10% increase in relative humidity, 5 g/m3 increase in abso-
lute humidity, and RRR comparing geopolitical areas with versus 
areas without implementation of school closures, restrictions of 
mass gatherings or measures of social distancing. The units of 
analysis were geopolitical areas; log rate ratios of COVID-19 
(dependent variable) and exposure variables (independent vari-
ables) were defined at the level of geopolitical areas. An RRR less 
than 1 indicates that an increase in a continuous exposure vari-
able or the presence of a public health intervention is associated 
with a decrease in epidemic growth, with an RRR of 0.60 corres
ponding to a 40% relative reduction in epidemic growth.

We determined associations of epidemic growth with exposure 
variables in univariate analyses, and in different multivariable 
models and analysis sets to determine robustness of associations 
as prespecified in the protocol (see Appendices 1 and 2). Then, we 
developed 2 parsimonious multivariable models. For Model 1, we 
first prioritized covariates on theoretical grounds and then used 
unsupervised cluster analysis for variable selection (Appendix 2, 
Table S2);27 for Model 2, we used stepwise backward selection of 
covariates based on the adjusted R2 statistic. We prespecified that 
Model 1 would take precedence over Model 2, as it would not be at 
risk of overfitting. Cluster analysis indicated clustering of the 
3 public health interventions (Appendix 2, Figure S2). We therefore 
derived a post hoc composite of exposure to any of the 3 interven-
tions. In addition, we prespecified to perform tests for trend 
according to the number of public health interventions imple-
mented (0, 1, or 2 or more) under the assumption that the RRRs for 
the association of epidemic growth with school closures, restric-
tions of mass gatherings or measures of social distancing would 
have the same direction and a similar magnitude. We forced major 
geographical regions (Asia, Oceania, Europe, Africa, Americas) into 
both models to account for the geographic progression of the pan-
demic. Analyses were performed in Stata, Release 14 (StataCorp, 
College Station, TX) and R (R Foundation for Statistical Computing, 
Vienna, Austria).

Ethics approval
This study did not require research ethics approval, as publicly 
available, anonymized aggregate data were used for all analyses. 
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Results

We included 144 geopolitical areas with 375 609 cases in our 
analyses (Appendix 2, Figure S3 and Table S3). The median 
COVID-19 case count per 1 million inhabitants for the 144 geo
political areas was 87.6 (IQR 31.9–193.7); the median rate ratio 
representing epidemic growth was 3.56 (IQR 2.41–4.66, Table 1). 
Most geopolitical areas were in the northern hemisphere, near 
sea level, with temperate climates. The median temperature was 
12.8°C (IQR 7.3–21.2), the median relative humidity was 69.0% 
(IQR 60.3–76.6) and the median absolute humidity was 7.1 g/m3 

(IQR 5.1–10.8). Temperature was strongly associated with the 
square of the latitude and, to a lesser extent, so was absolute 
humidity; relative humidity was not associated (Appendix 2, Fig-
ures S4–S6). In 38 geopolitical areas, at least 1 public health 
intervention had been implemented by Mar. 11, 2020, with 
24 areas having 1 implemented (16.7%), and 14 areas having 2 or 
3 interventions (9.7%); the remainder had no public health inter-
ventions in effect (73.6%). The implementation of public health 
interventions was correlated (Appendix 2, Figure S2). The median 
percentage of the population aged 65 years or older was 14.0%; 
the median life expectancy at birth was 79 years; on average, 
9.2% of GDP was spent on health (IQR 6.3%–13.5%); and the 
median distance to the closest established epidemic was 
4300 km (IQR 1300–8000; Table 1).

In univariate analyses (Figure 2), there was no association 
between epidemic growth and latitude (RRR per 400 degrees2 
increase 0.99, 95% CI 0.96–1.03, p = 0.72) or mean temperature 
(RRR per 5°C increase, 0.97, 95% CI 0.93–1.02). Conversely, there 
was a negative association with relative humidity (RRR per 10% 
increase 0.91, 95% CI 0.85–0.96) and with absolute humidity (RRR 
per 5  g/m3 increase 0.92, 95% CI 0.85–0.99). In Appendix 2, 
Figures S7–S10 show bubble plots of the rate ratio of COVID-19 
on a logarithmic scale against latitude, temperature and relative 
and absolute humidity.

The composite of any public health intervention (RRR 0.62, 
95% CI 0.53–0.73) and its components, restrictions of mass gath-
erings (RRR 0.65, 95% CI 0.53–0.79), school closures (RRR 0.63, 
95% CI 0.52–0.78) and measures of social distancing (RRR 0.62, 
95% CI 0.45–0.85), all showed strong negative associations with 
epidemic growth during the follow-up period between Mar. 21 
and Mar. 27 (Appendix 2, Figures S11–S13). The negative associ-
ation was more pronounced in geopolitical areas that had 2 or 
3  public health interventions compared with regions that had 
implemented 1 intervention (p for trend <  0.001; Figure 3). Epi-
demic growth varied by continent, health expenditure, Infec-
tious Disease Vulnerability Index and distance to closest estab-
lished epidemic.

In prespecified multivariable analyses and restricted 
analyses, associations with latitude and temperature remained 
nonsignificant (Appendix 2, Tables S4 and S5). The associations 
of epidemic growth with relative and absolute humidity 
attenuated and became mostly nonsignificant (Appendix 2, 
Tables S6 and S7). Negative associations with public health 
interventions all remained robust, except for measures of social 
distancing (Appendix 2, Tables S8–S12).

The main multivariable model (Figure 4) showed a weak, 
nonsignificant negative association of epidemic growth with 
absolute humidity (RRR per 5  g/m3 0.92, 95% CI 0.84–1.00, p = 
0.064), but a continued strong association with the number of 
public health interventions implemented (p value for trend = 
0.001). A multivariable model based on stepwise backward 
selection (Appendix 2, Figure S14) showed a weak negative asso-
ciation with absolute humidity (RRR per 5  g/m3 0.87, 95% CI 
0.77–0.99) and a strong negative association with the number of 
implemented public health interventions (p for trend = 0.004), 
and additionally suggested a negative association of epidemic 

Table 1: Characteristics of analyzed geopolitical areas 
(n = 144)

Variables Median or n IQR or %

No. of cases 558 221–1419

Case count (per 1 000 000 inhabitants) 87.6 31.4–193.7

Rate ratio 3.56 2.41–4.66

Latitude (degrees) 38.4 21.8–44.6

Temperature (°C) 12.8 7.3–21.2

Relative humidity (%) 69.0 60.3–76.6

Absolute humidity (g/m3) 7.1 5.2–10.8

Altitude (m) 82.5 16.0–274.0

Passenger flights (passengers/capita/yr) 2.3 1.0–4.7

Urban density (1000 inhabitants/km2) 3.6 1.8–6.2

Population (1 000 000  inhabitants) 7.1 3.1–20.6

Percentage of inhabitants aged 65 yr or older 14.0 8.3–17.2

Life expectancy at birth, yr 79 76–81

GDP (1000 USD/inhabitant) 40.1 8.4–56.3

Health expenditure as percentage of GDP 9.2 6.3–13.5

Infectious Disease Vulnerability Index 0.87 0.64–0.92

Any public health intervention 38 26.4%

Restrictions of mass gatherings 24 16.7%

Social distancing 10 6.9%

School closures 25 17.4%

No. of public health interventions

    0 106 73.6%

    1 24 16.7%

    2 or 3 14 9.7%

Global region

    Asia 30 20.8%

    Oceania 6 4.2%

    Europe 36 25.0%

    Africa 10 6.9%

    Americas 62 43.1%

Closest distance to established epidemic 
   (1000 km)

4.3 1.3–8.0

Note: GDP = gross domestic product, IQR = interquartile rage, USD = United States dollars.
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growth with increased life expectancy at birth, and residual vari-
ation by continent. Post hoc analyses based on a different met-
ric to estimate epidemic growth showed more pronounced 
reductions with public health interventions (Appendix 2, Tables 
S13 and S14).

Interpretation

In this prospective cohort study of 144 geopolitical areas with 
375 609 confirmed cases of COVID-19, epidemic growth of COVID-19 
during the follow-up period from Mar. 21 to Mar. 27, 2020, was not 

Latitude (per 400 degrees2)

Temperature (per 5°C)

Relative humidity (per 10%)

Absolute humidity (per 5g/m3)

Altitude (per 100 m)

Passenger flights (per 1 passenger/capita/yr)

Urban density (per 5000 inhabitants/km2)

Percentage of inhabitants aged 65 yr or older (per 5%)

Life expectancy at birth (per 5 yr)

GDP (per 20 000 USD/inhabitant)

Health expenditure as percentage of GDP (per 5%)

Infectious Disease Vulnerability Index (per 0.1)

Any public health intervention

Restriction of mass gatherings

School closures

Social distancing

Number of public health interventions

1 intervention

2 or 3 interventions

Major geographical regions

Oceania

Europe

Africa

Americas

Closest distance to established epidemic
(per 1000 km)

0.99 (0.96–1.03)

0.97 (0.93–1.02)

0.91 (0.85–0.96)

0.92 (0.85–0.99)

1.01 (1.00–1.03)

0.99 (0.96–1.01)

0.98 (0.91–1.06)

1.04 (0.97–1.12)

0.96 (0.88–1.05)

1.04 (0.98–1.10)

1.26 (1.16–1.37)

0.95 (0.91–0.99)

0.62 (0.53–0.73)

0.65 (0.53–0.79)

0.63 (0.52–0.78)

0.62 (0.45–0.85)

0.67 (0.55–0.82)

0.54 (0.42–0.70)

1.88 (1.31–2.70)

1.13 (0.93–1.38)

1.68 (1.24–2.28)

1.92 (1.60–2.31)

1.07 (1.05–1.10)

RRR

0.72

0.21

0.002

0.024

0.088

0.25

0.63

0.23

0.40

0.17

< 0.001

0.018

< 0.001

< 0.001

< 0.001

0.003

< 0.001

< 0.001

< 0.001

p value

Associated with
decreased epidemic

growth

Associated with
increased epidemic
growth 

1

RRR (95% CI)

0.5 0.7 1.4 2

Figure 2: Caterpillar plot presenting results of univariate analyses. Shown are ratios of rate ratios (RRRs) with 95% confidence intervals (CI) and 2-sided 
p values. The p value for number of public health interventions is a p value for trend. Reference categories are no public health intervention for number 
of public health interventions, and Asia for major geographical regions. An RRR of 0.62, for example, indicates a 38% relative reduction in epidemic 
growth. Note: GDP = gross domestic product.



RESEARCH

	 CMAJ  |  MAY 25, 2020  |  VOLUME 192  |  ISSUE 21	 E571

associated with geographic latitude, nor with temperature during 
the exposure period 14 days before, when SARS-CoV-2 transmis-
sion was assumed to have occurred. We found associations with 
relative and absolute humidity, but these were attenuated in multi-
variable models. The associations of epidemic growth with both 
dimensions of humidity, despite their low mutual correlation,28 
were suggestive of a minor role of humidity in the epidemiology of 
COVID-19, but this remains hypothetical. On the other hand, it is of 
considerable importance that we found strong negative associa-
tions with 3 public health interventions commonly used to contain 
the COVID-19 pandemic: restrictions of mass gatherings, school 
closures and measures of social distancing. Even though we were 
unable to reliably quantify the independent contribution of the 
3  interventions, our results are of immediate relevance, as many 
countries currently consider the removal of some of the imple-
mented public health interventions.

Our results are concordant with 3 studies from China,29–31 
which reported no evidence for an association of epidemic 
growth with temperature and relative humidity,29 but strong 
decreases in epidemic growth associated with public health 
measures.30,31 A recent rapid systematic review concluded that 
the evidence to support national closure of schools to combat 
COVID-19 is very weak and that data from influenza outbreaks 
suggest that school closures could have relatively small effects 
on SARS-CoV-2 owing to its high transmissibility and apparent 
low clinical effect on school children.32 Our results suggest that 
school closures are likely to have a larger effect than suggested 
in this review, but the clustering of school closures with other 

public health interventions means that we were unable to reli-
ably estimate the independent effect of this intervention on 
the COVID-19 pandemic. The effect of restrictions of mass 
gathering, measures of social distancing and school closures 
on viral transmission is understudied.32–34 However, mathemat-
ical models and limited observational evidence suggest that 
they can interrupt disease transmissions. Our study provides 
evidence using global data from the COVID-19 pandemic, that 
these interventions are strongly associated with reduced epi-
demic growth.

Limitations
Our study has a number of important limitations. First, 
because of considerable differences in testing practices 
between different geopolitical areas, actual rates of COVID-19 
could not be reliably estimated. We assumed, however, that 
rate ratios as measures of epidemic growth could be reliably 
estimated, as testing practices would affect both counts used 
to calculate the rate ratio in the same way during the ascer-
tained 1-week follow-up period. We were unable to identify 
reliable information on the number of SARS-CoV-2 tests per 
million inhabitants, and on different testing strategies, and 
therefore could not directly verify this assumption. Health 
expenditure as percent of GDP and Infectious Disease Vulner
ability Index16 may be associated to some extent with a health 
care system’s capacity to test and could serve as imperfect sur-
rogates. They were indeed both associated with epidemic 
growth in the univariate analysis, but the main multivariable 
model did not suggest an association with health expenditure. 
In addition, the random effects used in the regression model 
implicitly accounted for residual variation in characteristics of 
geopolitical areas that remained unexplained, including varia-
tion in testing strategies. Second, we assumed that SARS-CoV-2 
testing strategies did not vary during the follow-up period. 
Testing capacity was limited globally in March 2020 and was 
unlikely to change rapidly during the follow-up period in most 
geopolitical areas. In addition, we believe that the time win-
dow of 1 week was short enough so that reported confirmed 
cases in each geopolitical area were likely to represent a con-
stant percentage of the true actual cases. 

Third, only 38 geopolitical areas had implemented public 
health interventions by the cut-off date of Mar. 11, 2020, and the 
implementation of interventions was clustered. We therefore 
refrained from exploring the individual contributions and poten-
tial interactions between these interventions in multivariable 
models and merely constructed a binary composite variable, 
and a variable representing the number of interventions imple-
mented. This means that we were unable to reliably estimate 
the individual contributions of the 3 public health interventions 
that we analyzed. We therefore consider the magnitude of the 
association of epidemic growth with the composite of any pub-
lic health intervention and the linear trend of the association 
with the number of public health interventions more reliable 
and relevant for decision-making than the magnitude of associ-
ations of epidemic growth with the 3 public health interventions 
individually. Fourth, there was variation in measures of social 

p for trend < 0.001
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Figure 3: Bubble plot of epidemic growth against the number of public 
health interventions (0, 1, or 2 or more). Each bubble represents a 
geopolitical area, with the size of the bubble proportional to the weight 
of the geopolitical area in weighted random-effects regression with 
inverse-variance weights. Box and whisker plots: the box represents 
median and interquartile range; whiskers the most extreme values within 
1.5 times of the interquartile range beyond the 25th and 75th percentile. 
The p value for trend is from univariate weighted random-effects 
regression (see Figure 2). A rate ratio of 2, for example, indicates that the 
cumulative case count in a geopolitical area doubled within 1 week; a 
rate ratio of 3 indicates that it tripled.
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distancing reported by different geopolitical areas, including 
recommendations or requirements regarding social distancing, 
closure of sit-in restaurants and bars, or closure of nongrocery 
stores, and the derived average association will not shed light 
on the specific components of social distancing. Fifth, we ana-
lyzed only when restrictions of mass gathering were instituted, 
irrespective of the size of mass gatherings that were restricted. 
Sixth, we were unable to quantify compliance of the population 
with social distancing and restrictions of mass gatherings. Con-
versely, even though there may be local variations in strategies 
to implement school closures, we consider a high adherence to 
this intervention likely. 

Seventh, data on latitude, temperature and humidity were 
collected for the capital of each geopolitical area, which may not 
have accurately represented area-wide climate patterns. The 
limited granularity of the available data may therefore have 
resulted in nondifferential misclassification of exposure, which in 
turn may have biased estimates of associations toward the null 
(see Appendix 2, Tables S15–S23 and Figure S15 for details on 
risks of bias for individual exposure variables). The association 
between relative and absolute humidity and epidemic growth 
was suggestive but not consistent. Even if humidity proves 
important in the epidemiology of COVID-19 in the future, sea-
sonal effects will likely be attenuated by the high levels of sus-
ceptibility associated with pandemic diseases.35

Conclusion
Epidemic growth of COVID-19 was not associated with geographic 
latitude, nor with temperature during the exposure period, in our 
global analysis. Only area-wide public health interventions were 
consistently associated with reduced epidemic growth, and the 
greater the number of co-occurring public health interventions, the 
larger the reduction in growth. Taken together, these findings sug-
gest that seasonality is likely to play only a minor role in the epi
demiology of COVID-19, while public health interventions (school 
closures, restricting mass gatherings, social distancing) appear to 
have a major impact. The important effect of public health interven-
tions needs to be weighed carefully against potential economic and 
psychosocial harms when deciding when and how to lift restrictions.
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