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Eco-epidemiological assessment of the COVID-19 epidemic in China, January–
February 2020
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ABSTRACT
Background: The outbreak of COVID-19 in China in early 2020 provides a rich data source for
exploring the ecological determinants of this new infection, which may be of relevance as the
pandemic develops.
Objectives: Assessing the spread of the COVID-19 across China, in relation to associations
between cases and ecological factors including population density, temperature, solar radia-
tion and precipitation.
Methods: Open-access COVID-19 case data include 18,069 geo-located cases in China during
January and February 2020, which were mapped onto a 0.25° latitude/longitude grid together
with population and weather data (temperature, solar radiation and precipitation). Of 15,539
grid cells, 559 (3.6%) contained at least one case, and these were used to construct a Poisson
regression model of cell-weeks. Weather parameters were taken for the preceding week given
the established 5–7 day incubation period for COVID-19. The dependent variable in the
Poisson model was incident cases per cell-week and exposure was cell population, allowing
for clustering of cells over weeks, to give incidence rate ratios.
Results: The overall COVID-19 incidence rate in cells with confirmed cases was 0.12 per 1,000.
There was a single confirmed case in 113/559 (20.2%) of cells, while two grid cells recorded
over 1,000 confirmed cases. Weekly means of maximum daily temperature varied from −28.0°
C to 30.1°C, minimum daily temperature from −42.4°C to 23.0°C, maximum solar radiation
from 0.04 to 2.74 MJm−2 and total precipitation from 0 to 72.6 mm. Adjusted incidence rate
ratios suggested brighter, warmer and drier conditions were associated with lower incidence.
Conclusion: Though not demonstrating cause and effect, there were appreciable associations
between weather and COVID-19 incidence during the epidemic in China. This does not mean
the pandemic will go away with summer weather but demonstrates the importance of using
weather conditions in understanding and forecasting the spread of COVID-19.
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Background

In infectious outbreak situations, much epidemiolo-
gical effort rightly goes into case-finding and follow-
up in order to track epidemics. Population-based
analyses of ecological factors are however also impor-
tant, not least to inform models and prognostics for
future spread of the same infection elsewhere. Where
a new disease is involved, such as COVID-19, it is
particularly important to chart an unknown infec-
tious agent’s interactions with environments in
which transmission has occurred.

The large-scale outbreak of COVID-19 in China at
the start of 2020, by now largely contained, presents
an important opportunity to carry out an eco-
epidemiological assessment which may be relevant
for understanding patterns of transmission relevant
for the ensuing pandemic. Unprecedented open-
access data at the individual case level for the out-
break in China, including geo-location data, plus the

availability of detailed remote-sensed and global-
gridded ecological data, make this possible. The eco-
logical dimensions of the pathogen–host relationship
are likely to be determined by multiple factors,
including population density, social contacts,
a range of environmental and meteorological para-
meters, and population-based control measures. This
assessment specifically looks at weather and COVID-
19 incidence on a small-area basis in China, adjusting
for population density and week of the epidemic.

Many well-established pathogens follow well-
known seasonally and ecologically determined pat-
terns of activity [1]. The established concept of ‘tro-
pical medicine’ was largely predicated around
pathogens and vectors predominantly localised in
tropical regions, with some cases in travellers mani-
festing elsewhere [2]. Obviously little is yet known
about seasonal and ecological patterns for the new
SARS-CoV-2 coronavirus causing the current
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COVID-19 pandemic, although it is already clear that
this pathogen has capacity for wide and rapid geo-
graphic spread, and it is not confined to any particu-
lar climatic zone. Nevertheless, SARS-CoV-2
transmission may still be mediated by local weather
conditions. Other coronaviruses, such as Middle East
Respiratory Syndrome Coronavirus (MERS-CoV)
have been shown to follow established seasonal pat-
terns [3]. Human coronavirus infections have been
found to be more common in winter in Norway [4],
and in Israel in summer [5]. Thus, other coronavirus
diseases show various weather-related transmission
patterns, which may also be true for COVID-19.

The original COVID-19 epicentre in Wuhan City
reported approximately 3 times as many confirmed
cases as the whole of the rest of China, with peak
incidence during January 2020 [6]. This overwhelm-
ing number of cases in a single location was not
included in analyses here since it did not contribute
to geographic variation and occurred slightly earlier
than the generalised epidemic in China. While the
actual number of COVID-19 cases in China is gen-
erally considered to be much higher than the number
of tested and confirmed cases, perhaps by as much as
20-fold [7], confirmed cases represent a reasonable
basis for deriving incidence rate ratios in relation to
environmental factors. It is unlikely in general that
weather conditions would systematically affect the
ratio of confirmed:unconfirmed cases.

Several other recent studies have addressed the
relationship between weather and COVID-19 trans-
mission. One study looked at average temperature
and relative humidity, but only measured at
a provincial level, did not consider solar radiation
and rainfall, and did not reach clear public health
conclusions [8]. Another study related reproductive
numbers in Chinese cities to temperature and humid-
ity and extrapolated those findings worldwide [9].
Large-scale modelling of temperature and humidity
in relation to COVID cases suggested associations
[10]. Some attempts to model global transmission
with meteorological parameters have been made
[11]. A National Academies rapid review concen-
trated primarily on limited laboratory studies of var-
ious exposures to the SARS-CoV-2 virus, and also
concluded that available natural history studies (not
including this one) were so far inconclusive [12].

This eco-epidemiological assessment set out to use
data on COVID-19 incident cases throughout China
during January and February 2020 (excluding the
original epidemic focus of Wuhan city) and to relate
them to week of confirmation, population and
meteorological data. This represents a kind of ‘natural
experiment’ in terms of how secondary epidemic foci
occurred in diverse locations around China, before
the national epidemic was more or less under control
by the end of February, with wide variation in week-

specific and location-specific incidence rates. The
objective was to characterise the extent to which
ecological factors may have mediated COVID-19
transmission in China to inform public health plan-
ning and modelling in other settings.

Methods

This assessment is based on the open-access COVID-
19 incident case data maintained by the Open
COVID-19 Data Curation Group [13]. A total of
18,069 geo-located COVID-19 incident confirmed
cases during January and February 2020 were
extracted for the whole of China, excluding Wuhan
City. No confirmed cases were reported for the first 2
weeks of January. All cases were mapped by week of
confirmation onto a 0.25° latitude/longitude grid
(approximately 25 × 25 km squares) for the whole
of China, which included 15,539 cells. This grid was
also filled with population data from the NASA
Socioeconomic Data and Applications Center [14].
Gridded weather data for the whole of China during
January and February 2020 were sourced from the
Copernicus Climate Change Service ERA-5 T model,
specifically temperature at 2 m, total precipitation
and total sky direct solar radiation at surface [15].
Weekly averages/totals of daily weather data for each
geographic cell were calculated and mapped on the
geographic grid. These data were used as the basis for
generating maps of cases and ecological factors.

There were 559/15,539 (3.6%) grid cells which
contained at least one reported case at some point
during January and February (excluding Wuhan
City), and these were used to construct a Poisson
regression model (Stata 12) in which the unit of
observation was cell-week, over the period during
which cases occurred anywhere in the country
(weeks 3 to 9 of 2020, total 3,913 units of observa-
tion). Weather parameters during the preceding week
were included in the model on the basis of the estab-
lished 5–7 day incubation period for COVID-19,
since this was likely to reflect weather at the time of
disease transmission [16]. The dependent variable in
the Poisson model was the number of incident con-
firmed cases in the cell-week and exposure was the
population in the cell, allowing for clustering by the
grid cell identifier over weeks, with incidence rate
ratio as the outcome. In the absence of established
hypotheses on relationships between ecological fac-
tors and SARS-CoV-2 transmission, tertiles of quan-
titative variables were constructed as independent
variables to avoid erroneously imposing linear
assumptions. Grid cells which had no incident cases
reported throughout January and February were
excluded from the regression model, in the absence
of any evidence of the possibility of transmission in
the cell.
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Results

A total of 18,069 confirmed cases were reported,
contained in 559 0.25° grid cells, which corresponded
to an overall population of 151.2 million, around 10%
of the total Chinese population. This amounted to an
overall COVID-19 confirmed case incidence rate in
cells with cases of 0.12 per 1,000 population, although
the incidence of confirmed cases should be taken to
represent a small proportion of all cases. In 113/559
(20.2%) of grid cells with cases, there was only one
confirmed case during the whole period, while two
grid cells recorded over 1,000 cases.

Figure 1 shows (a) the geographic distribution of
cases, (b) population density for the whole country,

and, for January–February 2020, (c) average of daily
maximum temperature at 2 m, (d) average of daily
minimum temperature at 2 m, (e) total precipitation
and (f) average of daily total sky direct solar radiation
at the surface. The Supplementary Material contains
similar maps for temperature, precipitation and solar
radiation on a weekly basis, showing the location of
cases confirmed in the following week. Weekly means
of maximum daily temperature varied from −28.0°C
to 30.1°C, minimum daily temperature from −42.4°C
to 23.0°C, maximum solar radiation from 0.04 to 2.74
MJm−2 and total precipitation from 0 to 72.6 mm.

Table 1 summarises the data included in building
a Poisson regression model. Because of concerns
about collinearity between maximum and minimum

Figure 1. Maps of China, based on 15,539 0.25° grid cells, showing, for January–February 2020, (a) cell-densities of COVID-19
cases, (b) population density, (c) maximum temperature, (d) minimum temperature, (e) solar radiation and (f) precipitation.
Maps (b–f) show the 559 cells having at least one case in red (these maps are approximate representations of national borders).
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temperatures and solar radiation for constructing
a multivariable regression model, average daily tem-
perature was calculated as the average of maximum
and minimum daily temperatures, as a single mea-
sure of temperature. Then, to avoid imposing linear
relationships between temperature, solar radiation
and COVID-19 incidence, which appeared improb-
able from the bivariable results in Table 1, a tertiles
of tertiles approach was used, in which tertiles of
average temperature were further broken down into
tertiles of solar radiation, as shown in Figure 2. The
nine categories derived in this way were then used
as a categorical independent variable in the regres-
sion model, rather than having separate competing
variables for temperature and solar radiation.

If the single confirmed cases recorded in 113 cells
genuinely represented local index cases who had
travelled from elsewhere in China after becoming
infected under different ecological conditions, it
could be argued that they might distort the results.
Though it was probably more likely that the single
confirmed cases were contacts of local index cases,
a sensitivity analysis was performed by repeating the
regression with the omission of the 113 cells with
single confirmed cases. The results of the regression
model and this sensitivity analysis are shown in

Table 2, with no meaningful differences seen after
excluding the cells with single confirmed cases.

Figure 3 shows adjusted incidence rate ratios and
95% confidence intervals for the overall regression
model. Adjusted incidence rate ratios (adjusted for
week, population density and precipitation) for the
composite temperature-radiation variable from the
regression model are also shown in Figure 2. Most
of the adjusted incidence rate ratios were significantly
different from 1, evident in Figure 3 from the lack of
overlap of 95% confidence intervals with the vertical
line at an adjusted incidence rate ratio of 1.

The weather parameters for Wuhan City during
the large epidemic peak there in January were average
daily temperature 2.0°C, solar radiation 0.93 MJm−2

and precipitation 32 mm. This corresponds to the
highest incidence rate ratio categories in the assess-
ment for the rest of China shown in Figure 3.

Discussion

These analyses clearly show variations in confirmed
COVID-19 case incidence rates in China which are
associated with weather during the week preceding
case confirmation. An observational study of this
kind cannot formally attribute cause and effect, and

Table 1. Details of 3,913 0.25° grid cell-weeks of observation for COVID-19 incident cases in China (excluding Wuhan City)
during January–February 2020, covering a total of 18,069 cases among a population of 151.2 million. All grid cells in which at
least one case was observed during the overall period of observation are included. Bivariate incidence rate ratios and their 95%
confidence intervals were calculated using a Poisson regression model with the weekly number of cases as the dependent
variable, the grid cell population as the exposure variable and the previous week’s weather data as independent variables.

Parameter Level Units Range Median
Bivariate incidence

rate ratio
95% confidence

interval

Latitude degrees 18.25 to 49.75 32.25
Longitude degrees 82.00 to 132.25 113.25
Population per grid cell n 1,169 to

2.56 million
187,616

COVID-19 cases per grid cell n 1 to 1,262 6
Week in 2020 3 1 (ref) –

4 27.5 22.7–33.4
5 84.9 70.2–102.7
6 38.9 32.1–47.0
7 11.8 9.7–14.4
8 1.80 1.4–2.3
9 1.38 1.1–1.8

Population density 1st quintile km−2 2 to 109 57 1 (ref) –
2nd quintile km−2 110 to 198 155 0.75 0.69–0.81
3rd quintile km−2 199 to 392 275 1.01 0.94–1.08
4th quintile km−2 393 to 631 489 0.67 0.63–0.72
5th quintile km−2 632 to 3,626 788 0.20 0.18–0.21

Preceding week mean of daily
maximum temperature

1st tertile °C −18.1 to 5.2 −0.3 1 (ref) –
2nd tertile °C 5.2 to 11.7 8.5 2.11 2.02–2.20
3rd tertile °C 11.7 to 29.2 16.1 1.00 0.96–1.05

Preceding week mean of daily
minimum temperature

1st tertile °C −31.2 to −3.1 −11.3 1 (ref) –
2nd tertile °C −3.1 to 4.5 1.4 3.27 3.11–3.42
3rd tertile °C 4.5 to 15.9 8.3 1.13 1.07–1.19

Preceding week mean of daily
average temperature

1st tertile °C −22.4 to 1.2 −5.7 1 (ref) –
2nd tertile °C 1.2 to 8.1 4.8 3.58 3.42–3.76
3rd tertile °C 8.1 to 19.4 12.0 1.11 1.05–1.17

Preceding week mean of daily max
solar surface radiation

1st tertile MJm−2 0.07 to 0.82 0.59 1 (ref) –
2nd tertile MJm−2 0.59 to 1.33 1.07 2.57 2.48–2.67
3rd tertile MJm−2 1.33 to 2.44 1.64 0.72 0.69–0.76

Preceding week total precipitation 1st tertile mm 0 to 4.1 1.8 1 (ref) –
2nd tertile mm 4.1 to 11.4 7.2 2.57 2.44–2.70
3rd tertile mm 11.4 to 55.9 17.2 4.71 4.50–4.94
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there remain uncertainties which have to be consid-
ered as unknown unknowns. Nevertheless, this
assessment of the effects of weather on COVID-19
transmission in China suggests variations of
a sufficient magnitude to have important possible
consequences for understanding COVID-19 trans-
mission in other settings. This assessment also illus-
trates the value of the detailed open-access data
available both on confirmed COVID-19 cases and
ecological parameters.

While the open-access individual confirmed case
data is a hugely valuable resource, it is not able to tell
the full story of the circumstances of each case. The
nature of COVID-19 transmission is such that many
cases will have no idea exactly where, when or how
they acquired their infection, and so the location
data for confirmed cases are inevitably more reflec-
tive of illness and treatment-seeking rather than
infection. However, during the period of COVID-
19 spread around China, following the initial epicen-
tre epidemic in Wuhan City, the Chinese authorities
implemented stringent infection reduction and travel
restriction measures in many locations, the exact
nature and chronology of which are not documen-
ted. The somewhat counterintuitive relationship
seen in this assessment between population density
and COVID-19 incidence very possibly reflects the
effectiveness of infection control measures targeted
at densely populated urban areas. However, records

of cases in 559 locations outside Wuhan City, as
shown in Figure 1(a), show that there was wide-
spread nationwide transmission, even though only
a single confirmed case was recorded in 20% of
locations with cases. This possibly speaks to the
effectiveness of control measures in many places, as
well as the proportions of actual cases tested and
confirmed.

Among the unknown unknowns, the effect of
weather on human behaviour, and thus on beha-
vioural risks for acquiring COVID-19, may also be
important. The incidence of infections in China was
markedly lower at very low temperatures, which
might be related to characteristics of the virus, but
equally may reflect reduced social contact when it is
very cold outside. Conversely, brighter, drier weather
may stimulate levels of social interaction, and thereby
possibly counteract direct effects of heat and light on
viruses. The complex observed relationship between
temperature and solar radiation, as shown in Figure
2, is important, because the effects of temperature
and light, particularly in the ultra-violet spectrum,
have been shown to be associated with seasonal
viral activity in other contexts [17]. In this assess-
ment, the independent association of precipitation
with COVID-19 incidence rates was also appreciable.
A recent meteorological analysis showed very similar
weather patterns across a number of COVID-19 hot-
spots, including Wuhan City, in a corridor 30° to 50°

Figure 2. Weekly means of average daily temperature and solar radiation for 3,913 0.25° grid cell-weeks (shown as dots) of
observation for COVID-19 incident cases in China (excluding Wuhan City) during January–February 2020, covering a total of
18,069 cases among a population of 151.2 million. Temperature is divided into tertiles, with each tertile then divided into tertiles
of solar radiation. Numbers in each sector represent COVID-19 incidence rate ratios (adjusted for week, population density and
precipitation).
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North in early 2020 [18]. This is congruent with
findings here that weather conditions in Wuhan
City during January corresponded to the highest
risk categories as assessed across the rest of China.

Despite possible weaknesses around the case data,
one of the strengths of this assessment is that all the
other data were sourced from global data models that
are totally independent of the COVID-19 data from
China. Additionally, since China is a very large and
geographically varied country, assessment of COVD-
19 incidence was made over a very wide range of
weather, as evident from Figure 1(c–f), and detailed
daily weather data were sourced on a small-area basis
at 0.25° resolution. Although there may have been
local variations in the rigour with which COVID-19
cases in China were identified, tested and confirmed,
it seems unlikely that such variations would have
been systematically related to weather in previous
weeks. In addition, measures representing intuitively
accessible concepts in any location (warmth, sunshine
and rainfall) were used, and allowed to compete in
a multivariable model against COVID-19 incidence
rate ratios, to produce findings that are directly

understandable in public health terms.
Generalisability of these findings beyond the
Chinese context cannot be assumed, but there is no
suggestion from these results that there was any
combination of weather that would arrest COVID-
19 transmission on a seasonal basis. An initial assess-
ment of this kind, while not intended to be hypoth-
esis-driven, is likely to generate hypotheses for
further research. The associations demonstrated
here between weather and transmission also raise an
important specific research question. Recent progress
in mitigating the COVID-19 pandemic is demon-
strating the importance of social contact for transmis-
sion [19], and since social contact in many cultures
also varies with weather conditions, it will be impor-
tant to further investigate the weather – transmis-
sion – social contact complex in various settings.

Conclusion

While this assessment showed appreciable associations
between COVID-19 incidence rates and weather

Table 2. Details of 3,913 0.25° grid cell-weeks of observation for COVID-19 incident cases in China (excluding Wuhan City)
during January–February 2020, covering a total of 18,069 cases among a population of 151.2 million. Results are shown
separately for all 3,913 cell-weeks and with the exclusion of single-case cells as a sensitivity analysis. Multivariable incidence rate
ratios and their 95% confidence intervals were calculated using a Poisson regression model with the weekly number of cases as
the dependent variable, the grid cell population as the exposure variable and the previous week’s weather data as independent
variables.

Parameter Level

All 3,913 cell-weeks
Sensitivity analysis excluding

single-case cells

Multivariable
incidence rate ratio

95% confidence
interval

Multivariable
incidence rate ratio

95% confidence
interval

Week in 2020 3 1 (ref) – 1 (ref) –
4 19.4 11.1–33.8 19.7 11.3–34.2
5 48.0 16.7–86.7 50.8 28.5–91.5
6 21.8 11.7–40.7 24.6 13.4–45.1
7 10.3 5.92–17.8 11.4 6.66–19.6
8 1.39 0.67–2.88 1.55 0.75–3.22
9 0.90 0.34–2.33 1.02 0.39–2.65

Population density
quintiles

9–109 km−2 1 (ref) – 1 (ref) –
111–198 km−2 0.52 0.25–1.12 0.54 0.25–1.16
199–392 km−2 0.57 0.29–1.13 0.53 0.27–1.04
393–631 km−2 0.29 0.14–0.61 0.30 0.14–0.63
632–3,626 km−2 0.11 0.05–0.20 0.10 0.05–0.19

Preceding week temperature and
solar radiation tertiles of tertiles

1.2–8.1°C;
0.88–1.17 MJm−2

1 (ref) – 1 (ref) –

1.2–8.1°C;
0.35–0.88 MJm−2

0.61 0.36–1.05 0.66 0.40–1.09

1.2–8.1°C;
1.17–2.28 MJm−2

0.45 0.30–0.69 0.43 0.29–0.66

8.1–23.8°C;
1.44–1.77 MJm−2

0.32 017–0.62 0.30 0.16–0.58

8.1–23.8°C;
0.44–1.44 MJm−2

0.36 0.20–0.64 0.34 0.19–0.60

8.1–23.8°C;
1.77–2.44 MJm−2

0.50 0.26–0.95 0.44 0.23–0.84

−22.4–1.2°C;
0.53–0.77 MJm−2

0.20 0.10–0.41 0.24 0.12–0.47

−22.4–1.2°C;
0.07–0.53 MJm−2

0.16 0.09–0.27 0.18 0.11–0.29

−22.4–1.2°C;
0.77–1.84 MJm−2

0.22 0.11–0.43 0.24 0.05–0.19

Preceding week total precipitation
tertiles

0–4.1 mm 1 (ref) – 1 (ref) –
4.1–11.4 mm 1.50 1.11–2.03 1.45 1.08–1.95
11.4–55.9 mm 2.12 1.56–2.88 1.97 1.46–2.65
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patterns in China during January–February 2020, this
does not amount to establishing a clear cause and
effect relationship. However, it does not support any
generalisations to the effect that the COVID-19 pan-
demic will simply go away given some nice summer
weather. The size of the associations between weather
and incidence in China is very much of public health
interest in understanding the continuing spread of the
SARS-CoV-2 virus around the world, across different
climate zones. The possibility that transmission is
reduced during periods of brighter, warmer, drier
weather, or increased during duller, cooler, wetter
weather is important. Further assessments of this
kind in other locations and seasons are needed to
build a full picture, but meteorological data should
be considered for inclusion in overall models of
COVID-19 epidemiology and pandemic dynamics.
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