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Abstract: The outbreak of coronavirus disease 2019 (COVID-19), caused by the virus SARS-CoV-2,
has been rapidly increasing in the United States. Boroughs of New York City, including Queens
county, turn out to be the epicenters of this infection. According to the data provided by the New
York State Department of Health, most of the cases of new COVID-19 infections in New York City
have been found in the Queens county where 42,023 people have tested positive, and 3221 people
have died as of 20 April 2020. Person-to-person transmission and travels were implicated in the initial
spread of the outbreaks, but factors related to the late phase of rapidly spreading outbreaks in March
and April are still uncertain. A few previous studies have explored the links between air pollution
and COVID-19 infections, but more data is needed to understand the effects of short-term exposures
of air pollutants and meteorological factors on the spread of COVID-19 infections, particularly in
the U.S. disease epicenters. In this study, we have focused on ozone and PM2.5, two major air
pollutants in New York City, which were previously found to be associated with respiratory viral
infections. The aim of our regression modeling was to explore the associations among ozone, PM2.5,
daily meteorological variables (wind speed, temperature, relative humidity, absolute humidity, cloud
percentages, and precipitation levels), and COVID-19 confirmed new cases and new deaths in Queens
county, New York during March and April 2020. The results from these analyses showed that daily
average temperature, daily maximum eight-hour ozone concentration, average relative humidity,
and cloud percentages were significantly and positively associated with new confirmed cases related
to COVID-19; none of these variables showed significant associations with new deaths related to
COVID-19. The findings indicate that short-term exposures to ozone and other meteorological
factors can influence COVID-19 transmission and initiation of the disease, but disease aggravation
and mortality depend on other factors.

Keywords: COVID-19; SARS-CoV-2; air pollution; PM2.5; ozone; coronavirus; respiratory viral
infections; meteorological factors; temperature; humidity

1. Introduction

The outbreak of COVID-19 started in Wuhan, China, in December 2019 [1], and spread widely
in many other countries, including Italy, Iran, Spain, UK, and the USA, during the first four months
of 2020. This outbreak was declared a pandemic by the World Health Organization (WHO, Geneva,
Switzerland) on 11 March 2020 [2]. As of 23 April 2020, the WHO had reported 2,631,839 confirmed
cases and 182,100 confirmed deaths related to COVID-19 outbreak, from 213 countries, areas, or
territories of the world [2]. On the same day, the Centers for Disease Control and Prevention (CDC) in
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the United States reported 865,585 confirmed cases and 48,816 confirmed deaths related to COVID-19
from 50 U.S. states, District of Columbia, Guam, the Northern Mariana Islands, Puerto Rico, and the U.S.
Virgin Islands [3]. Among different COVID-19 affected states in the USA, New York state has remained
at the top where 271,590 patients have tested positive and 16,162 deaths have been reported as of
23 April 2020 by the New York Department of Health [4]. We conducted this study in Queens county
of New York because most cases of COVID-19 have been reported from this county (considered
as the epicenter of epicenters by some news media) where 46,387 people had tested positive as of
23 April 2020 [4] and air quality of this county is poor with respect to high ozone days (received Grade
F from the American Lung Association [5]).

We need a better understanding of the factors affecting the transmission of SARS-CoV-2 in order
to control the rapid spread of COVID-19. Preliminary investigations on the origin of COVID-19 caused
by the SARS-CoV-2 coronavirus suggests a zoonotic origin [6] because other coronavirus-related
diseases, such as Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome
(SARS) created outbreaks due to human–animal interactions. COVID-19 early transmission-related
studies in China have indicated that person-to-person transmission was a possible pathway [7–9],
but related findings in the USA are somewhat different. Burke et al. [10] conducted a study on active
monitoring of persons exposed to patients with confirmed COVID-19 in the USA. They found that
person-to-person transmissions and travel-related transmissions had been documented during the early
phase of the disease spread, but not for the later phase. An increasing number of newly diagnosed
confirmed and presumptive COVID-19 cases were reported after February 28 for the patients without
a relevant travel history or epidemiologic links to other infected patients [10].

This vital observation encouraged us to explore other alternate pathways and factors responsible
for COVID-19 transmission in Queens, New York. Recently, two recent studies from China reported
that short-term exposures of PM2.5, PM10, CO, NO2, O3, and ambient temperature were significantly
associated with COVID-19 confirmed cases [11,12]. To our knowledge (as of 24 April 2020), one study
in the USA (published preprint, not peer-reviewed yet) explored associations of long-term exposures
to PM2.5 with mortality related to COVID-19 [13], but the way in which short-term exposures to PM2.5

and ozone affect COVID-19 in disease epicenters have not yet been explored in the USA. The findings
of the new studies from China [11,12] and the already known poor air quality of Queens county in
New York with respect to high ozone days encouraged us to explore the associations among ozone,
PM2.5, and meteorological factors with COVID-19 confirmed cases and deaths.

Ozone is a common oxidant gas in urban air, and exposure to ozone can induce oxidative stress
causing airway inflammation and increased respiratory morbidities [14,15]. A few previous studies
have indicated that ozone-induced oxidative stress could alter the airway environment leading to
broadened cellular tropism or susceptibility to viral infections [16–18]. Kesic et al. [19] showed
that ozone exposure disturbed the protease/antiprotease balance in the airway liquid, and acute
exposure to ozone inversely altered the expression levels of human airway proteases, which could
mediate penetration of influenza viruses into host cells through cleavage of viral membrane protein
hemagglutinin. In addition to these mechanistic links, a few previous epidemiological studies have
shown associations among increased ambient ozone levels and respiratory viral infections [20–22].

Although the air quality in Queens is relatively better concerning PM2.5 (received Grade A from
the American Lung Association [5]) than ozone, we wanted to explore the associaitom of PM2.5 with
COVID-19 because the online preprint of a recent U.S. study [13] reported that an increase of only
one µg/m3 in PM2.5 was associated with an 8% increase in the COVID-19 death rate (95% CI 2%
and 15%). Additionally, some previous studies showed that exposure to urban airborne particulate
matter altered the macrophage-mediated inflammatory response to respiratory viral infection [23]
and a recent epidemiological study concluded that short-term elevated PM2.5 exposure was associated
with higher healthcare use for acute lower respiratory infection in young children, older children,
and adults [24].
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We also focused on different meteorological factors in our analyses, because several previous studies
have explored the associations among temperature [25–27], relative humidity [25–27], and sunlight
UV-B radiations [27] and respiratory viral infections; and a few recent studies (including non-peer
reviewed preprints published online) found significant associations among these factors and COVID-19
transmission and related deaths [12,28–31].

On the basis of these previous observations and knowledge gaps, we hypothesize that ambient
levels of ozone, PM2.5, and meteorological factors in Queens county, New York could be significantly
associated with COVID-19 confirmed cases and deaths. Our specific aims were to conduct univariate
analyses and negative binomial regression modeling to explore the associations among ozone, PM2.5,
daily meteorological variables (wind speed, temperature, relative humidity, and absolute humidity,
cloud, and precipitations) and COVID-19 confirmed new cases and numbers of new deaths in Queens,
during March and April 2020.

2. Materials and Methods

2.1. Study Area, Air Pollutant, and Meteorological Data Collection Sites, and COVID-19 Data Collection

The study area and sampling sites in Queens county, New York, are shown in Figure 1. Queens
is a borough of New York City, which is coterminous with Queens County (but without a county
government) in the state of New York, and it is the largest borough among the five boroughs of New
York City [32]. Queens is adjacent to the borough of Brooklyn, at the western end of Long Island,
and Nassau County is to its east (Figure 1). According to a recent U.S. census report, the borough of
Queens is the second largest in population in New York state, with an estimated population of 2,253,858
residents in 2019 and approximately 47.5 percent of these residents are foreign born [32]. According
to media reports, New York City continued to be the epicenter of the coronavirus pandemic in USA,
in April 2020, and within the city, some of the minority neighborhoods in Queens were the most
affected areas [33].
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Figure 1. The study area and air and meteorological sampling sites in Queens county, New York. Red
marker, Queens College; blue marker, Meadowmere Park; green marker, John F. Kennedy International
Airport (original Google map has been personalized following Google guidelines, map copyright:
Google, 2020).

Data on daily maximum eight-hour ozone, daily average PM2.5, average temperature, wind
speed, precipitation, and relative humidity and cloud percentages were collated from the databases of
the monitoring stations at Queens College (US EPA Air Quality System, US EPA, Washington, D.C., USA),
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weather observation station of the NOAA National Centers for Environmental Information at John
F. Kennedy International Airport, and World Weather Online, reported for the nearby Meadowmere
Park area in Queens. Since PM2.5 data was available from two sampling locations at the same site,
we used the average of the two datasets. Absolute humidity was calculated using relative humidity,
temperature, and pressure data.

Data on confirmed COVID-19 cases and numbers of related deaths for Queens county were
collected from USAFacts [34], which is a not-for-profit, nonpartisan civic initiative providing the most
comprehensive and understandable source of government data available in the USA. According
to USAFacts, the county-level data on COVID-19 is confirmed by referencing state and local
agencies directly.

2.2. Statistical Analyses of Collected Data

The outcome of this study was that there were new COVID-19 cases and deaths every day from
1 March to 20 April 2020. In this study, the negative binomial regression model was applied for
modeling the effects of two air pollutants and six meteorological factors on new cases and deaths
as count outcomes with potential overdispersion (i.e., the variance of outcome is larger than the mean,
which is usually the case for skewed count outcomes). Since the outcome of new deaths had many zero
values (47%), we further applied the hurdle regression model to account for excess zeros. The hurdle
model has two separate parts, which assumes truncated (at zero) negative binomial distribution for
the non-zero counts and binomial distribution for the zeros. The predictors of interest were PM2.5,
ozone, and some meteorological factors, i.e., wind speed, temperature, precipitation, cloud percentage,
relative humidity, and absolute humidity. Note that ozone data was unavailable for two days resulting
in two missing values, which was imputed by the average of the t − 1 day and the t + 1 day for
the missing value at t day before fitting the models. We used 21-day moving average concentrations of
PM2.5 and meteorological factors (i.e., the average values of the current day and previous 21 days)
to represent the cumulative lag effect of these variables on disease outcomes over the past 21 days.
We chose 21 days, since the incubation period of COVID-19 under conservative assumptions is about
14 days [35], and the worst-case maximum incubation period for COVID-19 can be 19 and 27 days
based on available literature [36,37]. In addition, we wanted to summarize mostly the lag effect of
air pollutants and meteorological factors by setting the anticipated effect time one week earlier than
the 14-day incubation time for typical COVID-19 cases.

We adjusted the effect of PM2.5, ozone, and other meteorological factors by two confounders,
i.e., lagged outcome and day trend. The lagged outcome was included to account for the potential
autocorrelation of the time series of new cases (deaths), and we used the logarithm values of COVID-19
new case (or death) counts plus one, reported on the t − 1 day (i.e., log(caselag1 + 1) or log(deathlag1
+ 1)). We added 1 before taking the log to avoid the case of log (0) because, at the earlier month of
March 2020, there were days with zero values for both outcomes. In addition, we included a trend
variable as the other confounder to control for the unobserved trend of the time series at each day
(i.e., whether an increase or decrease over time). Furthermore, we checked if there was any potential
seasonal pattern that existed for both time series (new cases and deaths). For example, there could
be a weekly pattern due to varying testing availability and case registrations between days during
the week and on weekends. However, our data did not show such a pattern, which indicated that
the disease progression and management of disease testing by health departments were incessant
on the weekends. To avoid the potential collinearity issue among the meteorological factors, eight
single-factor (PM2.5, ozone, or any meteorological factor one at a time) models of the case and death
outcomes, respectively, were fitted by adjusting the two confounders trend and lag outcome values,
resulting in sixteen single models in total. For the death outcome, the logit/binary part of the hurdle
model used the same predictors as the truncated-zero count part. Effect estimates were calculated
as the exponential form of regression coefficients, which demonstrates the incidence rate ratio (IRR) of
one unit increase in PM2.5, ozone, and meteorological variable concentrations for daily COVID-19 new
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cases or deaths. In addition, we interpreted the IRRs in terms of the percent (%) change of the outcomes.
We performed model diagnostics based on the Durbin–Watson test of the residuals, in order to make
sure that there was no significant temporal autocorrection of model residuals. We also checked whether
the models fitted the observed data well, including excess zeros in the death outcome.

All analyses in this study were conducted using R statistical software (R Foundation for Statistical
Computing, Vienna, Austria). A p-value of <0.05 was considered to be statistically significant. We used
“MASS” R - package [38] to fit the negative binomial regression models, “pscl” package [39,40] to
fit the hurdle regression models and “DHARMa” package [41] to perform model diagnostics on
the fitted models.

3. Results and Discussions

3.1. Descriptive Analysis of Data on COVID-19 Cases and Deaths, Ozone, PM2.5, and Meteorological Factors

The first confirmed COVID-19 case in Queens county was reported on 7 March 2020 and as of 20
April, confirmed cumulative cases were 42,023 (mean ± SD 13,329 ± 14,671, median 7362, interquartile
range (IQR) 26222). The number of daily new cases during this period ranged from 0 to 2056 (mean± SD
824 ± 698, median 906, IQR 1395). Figure 2A,B shows trends for daily cumulative COVID-19 confirmed
cases and new cases, respectively. The first deaths related to COVID-19 were reported on 22 March
2020 for 21 persons, and cumulative deaths as of 20 April 2020 were 3221 (mean ± SD 725 ± 1024,
median 124, IQR 1344). The number of daily new deaths during that period ranged from 0 to 360
(mean ± SD 110 ± 104, median 71). Figure 2A,B also shows trends for daily cumulative deaths related
to COVID-19 and daily new deaths, respectively.

The ozone level (daily maximum eight-hour concentration) was found to be gradually increased
during the observation period. The ozone levels ranged from 0.031 to 0.053 ppm (mean ± SD
0.04 ± 0.005 ppm, median 0.04 ppm, IQR 0.01). Daily changes of ozone levels are presented in Figure 3A.
As shown in Figure 3B, a gradual decrease of PM2.5 levels was found probably due to no travel
and stay-at-home recommendations/orders from the state government.

Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 5 of 13 

 

All analyses in this study were conducted using R statistical software (R Foundation for 
Statistical Computing, Vienna, Austria). A p-value of <0.05 was considered to be statistically 

significant. We used “MASS” R - package [38] to fit the negative binomial regression models, “pscl” 

package [39,40] to fit the hurdle regression models and “DHARMa” package [41] to perform model 

diagnostics on the fitted models. 

3. Results and Discussions 

3.1. Descriptive Analysis of Data on COVID-19 Cases and Deaths, Ozone, PM2.5, and Meteorological Factors 

The first confirmed COVID-19 case in Queens county was reported on 7 March 2020 and as of 

20 April, confirmed cumulative cases were 42,023 (mean ± SD 13,329 ± 14,671, median 7362, 

interquartile range (IQR) 26222). The number of daily new cases during this period ranged from 0 to 

2056 (mean ± SD 824 ± 698, median 906, IQR 1395). Figure 2A,B shows trends for daily cumulative 

COVID-19 confirmed cases and new cases, respectively. The first deaths related to COVID-19 were 

reported on 22 March 2020 for 21 persons, and cumulative deaths as of 20 April 2020 were 3221 (mean 

± SD 725 ± 1024, median 124, IQR 1344). The number of daily new deaths during that period ranged 

from 0 to 360 (mean ± SD 110 ± 104, median 71). Figure 2A,B also shows trends for daily cumulative 

deaths related to COVID-19 and daily new deaths, respectively. 

The ozone level (daily maximum eight-hour concentration) was found to be gradually increased 

during the observation period. The ozone levels ranged from 0.031 to 0.053 ppm (mean ± SD 0.04 ± 

0.005 ppm, median 0.04 ppm, IQR 0.01). Daily changes of ozone levels are presented in Figure 3A. As 

shown in Figure 3B, a gradual decrease of PM2.5 levels was found probably due to no travel and stay-

at-home recommendations/orders from the state government. 

The PM2.5 levels ranged from 0. 65 to 11.15 µg/m3 during the observation period (mean ± SD 4.73 

± 2.39 µg/m3, median 4.1 µg/m3, IQR: 2.85). Daily changes of wind speed, temperature, relative 

humidity, cloud percentages, absolute humidity, and precipitations are presented below in the Figure 

4. Descriptive analysis results for these meteorological variables are as follows  (also summarized in 

the Table 1): (1) Wind speed range from 3.61 to 23.71 m/s, mean ± SD 12.11 ± 5.94 m/s, median 11.41 

m/s, IQR 6.27; (2) temperature range from 32 to 55 °F, mean ± SD 47.08 ± 4.97 °F, median 47.5 °F, IQR 

6; (3) relative humidity range from 41% to 92%, mean ± SD 62.9% ± 13.96%, median 61%, IQR 61; (4) 

cloud range offrom10% to 99%, mean ± SD 53.88% ± 24.18%, median 50%, IQR 39; (5) absolute 

humidity range from 0.002 to 0.009 kg/m3, mean ± SD 0.005 ± 0.001 kg/m3, median 0.005 kg/m3, IQR 

0.002; and (6) precipitation levels range from 0 to 1.28 mm, mean ± SD 0.1 ± 0.28 mm, median 0 mm, 

IQR 0.06. 

  

Figure 2. Daily variations of COVID-19 in Queens, New York between 1 February and 20 April 2020. 

(A) Cumulative confirmed cases and deaths; (B) New confirmed cases and deaths. 

Although ozone levels were found to be increasing during the COVID-19 outbreak in Queens, 

none of the data points for the height-hour max ozone exceeded the EPA health-related regulatory 

Dates

2/3/20  2/17/20  3/2/20  3/16/20  3/30/20  4/13/20  4/27/20  

N
u
m

b
e
rs

 o
f 
p
e
o
p
le

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Cumulative confirmed cases
Cumulative deathsA

Dates

2/3/20  2/17/20  3/2/20  3/16/20  3/30/20  4/13/20  4/27/20  

N
u
m

b
e
rs

 o
f 
p
e
o
p
le

0

500

1000

1500

2000

2500

3000

New confirmed cases
New deathsB

Figure 2. Daily variations of COVID-19 in Queens, New York between 1 February and 20 April 2020.
(A) Cumulative confirmed cases and deaths; (B) New confirmed cases and deaths.

The PM2.5 levels ranged from 0. 65 to 11.15 µg/m3 during the observation period (mean ± SD
4.73 ± 2.39 µg/m3, median 4.1 µg/m3, IQR: 2.85). Daily changes of wind speed, temperature, relative
humidity, cloud percentages, absolute humidity, and precipitations are presented below in the Figure 4.
Descriptive analysis results for these meteorological variables are as follows (also summarized in
the Table 1): (1) Wind speed range from 3.61 to 23.71 m/s, mean ± SD 12.11 ± 5.94 m/s, median 11.41
m/s, IQR 6.27; (2) temperature range from 32 to 55 ◦F, mean ± SD 47.08 ± 4.97 ◦F, median 47.5 ◦F,
IQR 6; (3) relative humidity range from 41% to 92%, mean ± SD 62.9% ± 13.96%, median 61%, IQR
61; (4) cloud range from 10% to 99%, mean ± SD 53.88% ± 24.18%, median 50%, IQR 39; (5) absolute
humidity range from 0.002 to 0.009 kg/m3, mean ± SD 0.005 ± 0.001 kg/m3, median 0.005 kg/m3, IQR
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0.002; and (6) precipitation levels range from 0 to 1.28 mm, mean ± SD 0.1 ± 0.28 mm, median 0 mm,
IQR 0.06.

Table 1. Descriptive statistics of PM2.5, ozone, and meteorological variables across all days.

Meteorological Variables Mean SD Min. Max.

PM2.5 (µg/m3) 4.733 2.398 0.650 11.150
Ozone (ppm) 0.040 0.005 0.031 0.053

Wind speed (m/s) 12.114 5.050 3.610 23.710
Temperature (◦F) 47.088 4.976 32.000 55.000

Precipitation (mm) 0.106 0.280 0.000 1.280
Cloud (%) 53.882 24.188 10.000 99.000

Relative humidity (%) 62.902 13.967 41.000 92.000
Absolute humidity (kg/m3) 0.005 0.002 0.002 0.009

Although ozone levels were found to be increasing during the COVID-19 outbreak in Queens,
none of the data points for the height-hour max ozone exceeded the EPA health-related regulatory
standard of 0.07–0.085 ppm (unhealthy for sensitive groups). The ways in which lower doses of ozone
are related to respiratory infections are relatively unknown, but a recent nationwide study found that
older adults faced a higher risk of premature death even when the ozone level remained well below
the current national standard [42]. Similarly, PM2.5 levels were much lower than the EPA 24-hour
standard of 35 µg/m3 based on the three-year average of the annual 98th percentile concentrations [43].
However, we were curious to examine the effects of these low PM2.5 levels, because a recent non-peer
reviewed preprint reported that exposure to PM10 could significantly enhance RNA virus infection
such as N.D.V., H1N1 (PR-8), and H5N1 in human lung epithelial A459 cells [44] by increasing viral
replications. Temperature levels were gradually increasing during the observation period (Figure 4B)
but were mostly observed between 30 and 50 ◦F. This early spring temperature range was slightly
higher than the last year (when March first week’s data were compared), but it was still below 70 ◦F
at which viral lipid-dependent attachment to host cells [45] could be facilitated [46]. We certainly need
more research on this issue.
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Figure 3. Daily variations of ozone (A) and PM2.5 (B) in Queens, New York between 1 February
and 20 April 2020.

3.2. Correlations among Ozone, PM2.5, and Meteorological Variables

We have examined correlations of selected pollutants and meteorological factors by calculating
Spearman’s rank correlation coefficients (Table 2). We found that there were strong correlations among
the predictor variables. Therefore, we could only fit single-predictor regression models adjusting
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the confounders in Section 3.3, whereas a multiple regression model could not provide valid results
due to largely inflated standard errors of the regression estimates.

Table 2. Pairwise Spearman correlation of selected pollutants and meteorological factors.

Var1 Var2 Spearman’s ρ p Value

PM2.5 Ozone −0.8174 <0.0001
PM2.5 Wind speed 0.5846 <0.0001
Ozone Wind speed −0.5391 <0.0001
PM2.5 Temperature −0.7562 <0.0001
Ozone Temperature 0.9661 <0.0001

Windspeed Temperature −0.5381 <0.0001
PM2.5 Precipitation −0.5587 <0.0001
Ozone Precipitation 0.3277 0.0177

Wind speed Precipitation −0.5687 <0.0001
Temperature Precipitation 0.3530 0.0103

PM2.5 Cloud −0.7975 <0.0001
Ozone Cloud 0.8391 <0.0001

Wind speed Cloud −0.6048 <0.0001
Temperature Cloud 0.7965 <0.0001
Precipitation Cloud 0.6382 <0.0001

PM2.5 Relative humidity −0.7415 <0.0001
Ozone Relative humidity 0.7705 <0.0001

Wind speed Relative humidity −0.5700 <0.0001
Temperature Relative humidity 0.7516 <0.0001
Precipitation Relative humidity 0.6986 <0.0001

Cloud Relative humidity 0.9727 <0.0001
PM2.5 Absolute humidity −0.7911 <0.0001
Ozone Absolute humidity 0.9478 <0.0001

Wind speed Absolute humidity −0.5327 <0.0001
Temperature Absolute humidity 0.9618 <0.0001
Precipitation Absolute humidity 0.4335 0.0013

Cloud Absolute humidity 0.8867 <0.0001
Relative Humidity Absolute humidity 0.8658 <0.0001

3.3. Relationships among COVID-19 Confirmed Cases/Deaths, Ozone, PM2.5, and Meteorological Variables

The effects of ozone, PM2.5, and meteorological variables from 16 single-predictor models were
summarized in Table 3 for new confirmed COVID-19 cases and in Table 4 for new deaths in Queens.
The Durbin–Watson test p-values of all single-predictor models are greater than 0.05, suggesting no
indication of temporal autocorrelation of model residuals.

From Table 3, we observe significant positive associations of ozone and all meteorological
factors and a significant negative association among PM2.5 and new daily confirmed COVID-19 cases.
A one-unit increase in the moving average of PM2.5 (µg/m3) was associated with a 33.11% (95% CI
31.04–35.22) decrease in the daily new COVID-19 cases. While a one-unit increase in the moving average
of ozone (ppb), wind speed (m/s), temperature (◦F), precipitation (mm), cloud (%), relative humidity
(%), and a ten-unit increase in absolute humidity (g/cm3) values, during the past 21 days, was associated
with a 10.51% (7.47–13.63), 3% (1.28–4.73),12.87% (10.76–15.02), 66.06% (58.33–74.17), 2.11% (1.85–2.37),
3.54% (3.09–3.99) and 4.76% (4.11–5.42) increase in the daily new COVID-19 cases. For a better
comparison of effects across predictors, Figures 5 and 6 show the adjusted IRRs and the corresponding
95% confidence intervals associated with each environmental predictor for new COVID-19 cases
and deaths, respectively. It is clear that the results of cases are much more accurate (narrower CIs) than
that of deaths due to a large number of zero values and small counts in death outcomes.
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Figure 4. Daily variations of meteorological factors in Queens, New York between 1 February
and 20 April 2020. (A) Wind speed; (B) Temperature; (C) Relative humidity; (D) Cloud; (E) Absolute
humidity; (F) Precipitation.

Table 3 data also suggests that every 10 g/cm3 increase in absolute humidity is significantly
associated with 2.13% increase of new COVID-19 cases. This finding is interesting and matching with
the recent preprint from the Harvard Medical School on the role of absolute humidity on transmission
rates of the COVID-19 outbreak [47].

We have noticed another interesting finding in our study. Mostly, there is a significant negative
trend effect showing that the count of new cases is decreasing over time. This finding is consistent
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across all five single-predictor models of PM2.5, wind speed, precipitation, and relative humidity
against new cases. The trend effect in models with absolute humidity and temperature were not
significant, while in the model of cloud as the predictor, it was significantly positive. This is certainly
a piece of positive news when we have high levels of anxiety due to the COVID-19, and more and more
countries are in lockdown, and an increasing number of people are living in isolation. However,
we have to consider the limitations in the availability of test kits and limited numbers of tests conducted
at the beginning of the outbreak, which could influence this finding.

Table 3. Single-predictor regression model results for the relation among the moving average of lag
0–21 days of each environmental predictors and new COVID-19 cases adjusted by trend and lag 1-day
values of cases.

Estimate Std. Error Z Score IRR 95% CI
Lower

95% CI
Upper Pr(>|z|)

PM2.5 (µg/m3) −0.4029 0.0160 −25.2200 0.6684 0.6478 0.6896 <0.0001
Ozone (ppb) 0.0999 0.0142 7.0179 1.1051 1.0747 1.1363 <0.0001

Wind speed (m/s) 0.0295 0.0085 3.4566 1.0299 1.0128 1.0473 0.0005
Temperature (◦F) 0.1210 0.0096 12.5792 1.1287 1.1076 1.1502 <0.0001

Precipitation (mm) 0.5072 0.0243 20.8445 1.6606 1.5833 1.7417 <0.0001
Cloud (%) 0.0209 0.0013 16.0021 1.0211 1.0185 1.0237 <0.0001

Relative humidity (%) 0.0348 0.0022 15.6379 1.0354 1.0309 1.0399 <0.0001
Absolute humidity (10 g/cm3) 0.0465 0.0032 14.6070 1.0476 1.0411 1.0542 <0.0001

Table 4. Single-predictor regression model results for the relation among the moving average of lag
0–21 days of each environmental predictors and new COVID-19 deaths adjusted by trend and lag 1-day
values of deaths.

Estimate Std. Error Z Score IRR 95% CI
Lower

95% CI
Upper Pr(>|z|)

PM2.5 (µg/m3) −0.1151 0.0573 −2.0106 0.8912 0.7966 0.9971 0.0444
Ozone (ppb) −0.1101 0.0531 −2.0722 0.8958 0.8072 0.9941 0.0382

Wind speed (m/s) −0.0375 0.0587 −0.6396 0.9632 0.8585 1.0806 0.5224
Temperature (◦F) −0.0655 0.0587 −1.1160 0.9366 0.8349 1.0508 0.2644

Precipitation (mm) −0.0941 0.0688 −1.3687 0.9102 0.7954 1.0415 0.1711
Cloud (%) −0.1484 0.0521 −2.8469 0.8621 0.7784 0.9548 0.0044

Relative humidity (%) −0.1334 0.0497 −2.6838 0.8752 0.7939 0.9647 0.0073
Absolute humidity (10 g/cm3) −0.0764 0.0547 −1.3962 0.9264 0.8322 1.0313 0.1626
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for new COVID-19 confirmed cases.

Similar to our findings, a recent study from China also reported that the rise of temperature was
significantly associated with an increase in daily confirmed cases of COVID-19 in Chinese cities [12].
The authors reported that a 1 ◦C rise in the mean temperature of last weeks (when <3 ◦C) was associated
with a 4.861% increase in the daily COVID-19 confirmed cases. We found a more robust association
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(1 ◦F increase of temperature was associated with 10.28% increase of new cases) when temperatures of
the last 21 days were considered.
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A recent study in China [11] also explored short-term effects of air pollutants and meteorological
factors on COVID-19 and, unlike our study, found a significant effect of PM2.5 on COVID-19 cases.
On the one hand, this study was of a larger scale that considered data from multiple cities, which was
a positive aspect. On the other hand, combining data of multiple cities involving multiple monitors
operated by different regulatory agencies and local confounding factors related to air sampling
and pollutant analysis methods at different locations could increase the chances of misrepresentation
of data for local conditions. The model selected in the study from China [11] was interesting but needs
further validation. For example, the model assumed normal distribution of data, whereas the count
outcomes in COVID-19 studies were not naturally symmetrical or normally distributed although
the authors tried to linearize the skewed count data by taking the logarithms. In addition, such a model
cannot fit zero values since it is not valid to take logarithms on an outcome with any zero values.
A more appropriate family of statistical models called generalized linear models (GLM) are available
to fit the count data and the Poisson model is the most well known. In our study, we applied another
member of the GLM family, the negative binomial model, because it fits overdispersed count data better
than the Poisson model. We further improved the negative binomial model for the new COVID-19
deaths since approximately half of the data were zeros and regular count models generally predict
a lower number of zeros for data of excess zeros. Therefore, we used the hurdle model to fit the death
outcome with excess zero values. Finally, we checked the fit of the model and performed model
diagnostics on the residuals to make sure that all model assumptions were valid.

Our Table 3 data also show that when cloud, precipitation, and wind data were treated
with the single predictor models, all of these data were significantly associated with one-day
lagged COVID-19 confirmed cases. An increase of cloud percentages and precipitations are
obviously associated with decreased sunshine duration and previous epidemiological [48], and new
experimental [49] findings have shown that sunlight levels are inversely correlated with influenza
transmission. Therefore, our findings seem plausible.

To the best of our knowledge, this is the first study in the USA on short-term associations among
two common urban air pollutants and meteorological factors with confirmed COVID-19 new cases
and deaths. This study has, however, several limitations. First, the sample size is small. Secondly,
the COVID-19 progress in the USA, including Queens county and New York City, has still been
unpredictable for the following months. We expect a second wave of the disease and our study was
concerned with only the initial disease spread period. Third, this study is limited to two major urban air
pollutants, i.e., ozone and PM2.5. There are other gaseous pollutants, such as NO2 and SO2, which could
influence transmission and pathogenesis of COVID-19. Fourth, a 21-day moving average is rather
long concerning the whole study period, which was less than two months. Finally, the uncertainty of
exposure levels is a problem. We used the data collected by stationary monitors. These data do not
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represent actual personal exposures for the people who are infected with COVID-19 and residing away
from the monitoring stations.

Despite these limitations, our study findings indicate that interactions among air pollutants
and meteorological factors could be responsible for the transmission and pathogenesis of COVID-19,
and future large-scale studies should be designed to understand these interactions. Pollutants such
as ozone could have direct effects during a critical stage of infection initiation or replication of
SARS-CoV-2 viruses, which should be examined in properly designed laboratory experiments. Human
susceptibility to COVID-19 could be altered by air pollutants. Pollutants could also affect the lower
respiratory tract protease-antiprotease balance and microflora which could be associated with disease
development for COVID-19. All these emerging research areas related to COVID-19 should be
addressed soon in order to successfully manage similar viral outbreaks in the future.

4. Conclusions

Overall, our study findings conclude that short-term exposures of ozone and other meteorological
factors in Queens county could be associated with COVID-19 transmission and initiation of the disease
during the observation period till 20 April 2020, but disease aggravation and mortality depend on
other factors.
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