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• The study explores the effect of regional
climatic conditions on the spread of
COVID-19.

• The regional climate parameters are im-
portant factors that may trigger the
spread of the COVID-19.

• The fast-spreading of COVID-19 has an
association with average high and low
temperatures.

• The average daylight hours have a con-
notation with the spreading rate of pan-
demic disease.
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The pandemic outbreak of the novel coronavirus epidemic disease (COVID-19) is spreading like a diffusion-
reaction in the world and almost 208 countries and territories are being affected around the globe. It became a
sever health and socio-economic problem, while the world has no vaccine to combat this virus. This research
aims to analyze the connection between the fast spread of COVID-19 and regional climate parameters over a
global scale. In this research, we collected the data of COVID-19 cases from the time of 1st reported case to the
5th June 2020 in different affected countries and regional climatic parameters data from January 2020 to 5th
June 2020. It was found that most of the countries located in the relatively lower temperature region show a
rapid increase in the COVID-19 cases than the countries locating in thewarmer climatic regions despite their bet-
ter socio-economic conditions. A correlation between metrological parameters and COVID-19 cases was ob-
served. Average daylight hours are correlated to total the COVID-19 cases with a coefficient of determination
of 0.42, while average high-temperature shows a correlation of 0.59 and 0.42 with total COVID-19 cases and
death cases respectively. The finding of the study will help international health organizations and local adminis-
trations to combat and well manage the spread of COVID-19.

© 2020 Elsevier B.V. All rights reserved.
al).
1. Introduction

The pandemic diseases have been some of themost distressing hap-
penings in the history of mankind. The Black Death sponged about one-
third of the total European population and the Spanish Flu in 1918
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affected more human beings than the entire victims of the 1st World
War (Davis et al., 2018; Decaro and Lorusso, 2020; Djalante et al.,
2020; Gould, 2009; Hussain et al., 2020; Kandel et al., 2020; Keilman,
2019; Liu et al., 2020d; Malik et al., 2020; Molineri et al., 2017; Salam
et al., 2020). The epidemic outbreak of Swine Flu, Zika, and Ebola
Virus had caused worldwide panic, while the outbreak of novel corona-
virus (nCoV) andMiddle East Respiratory Syndrome (MERS) caused se-
vere loss of human life and economic value (Altamimi and Ahmed,
2019; Bhowmick et al., 2020; Chan et al., 2011; Decaro and Lorusso,
2020; Hoogeveen, 2020; Lin et al., 2018; Liu et al., 2020d; Paz and
Semenza, 2016; Zhang et al., 2020).

Human beings already facing significant global challenges of water
scarcity, food security, and climate change (Iqbal et al., 2018a; Iqbal
et al., 2019; Iqbal et al., 2018b; Yokomatsu et al., 2020), came under a
swear attack of epidemic COVID-19 in December 2019, in Wuhan, a
city of China (Burki, 2020; Chinazzi et al., 2020; World Health
Organization, 2020a). Initially, the virus was acknowledged by the Chi-
nese health care administration as of January 07, 2020 (Millán-Oñate
et al., 2020). The COVID-19 also entitled as novel coronavirus causes se-
vere respirational problems in effected patients (Burki, 2020; Chinazzi
et al., 2020; World Health Organization, 2020b).

The virus spread from Wuhan city of China and affected more than
210 countries and territories of the world (World Health Organization,
2020a; Zu et al., 2020). Although, most of the novel COVID-19 cases in-
dicate mild symptoms and recover from this disease due to early pre-
cautionary measures and self-immunization systems (Lai et al., 2020).
Yet many cases are reported with severe symptoms which caused a
high number of deceases in many parts of the world i.e. Italy (15,887),
Spain (13,055), USA (9624), France (8078), UK (4934), Iran (3739),
China (3331), Malaysia (62), India (118) Hong Kong (4), Thailand
(26), and Pakistan (50)with a varying number of closed cases outcomes
ranging from 0.4 to 50% (Ji et al., 2020; Surveillances, 2020).

COVID-19 spreading continuously and created one of the biggest
panics of the 21st centurywith a lockdown ofmore than 6 billion people
of the planet. The virus is considered as one of the most lethal invisible
enemies known to the human being, where its fast transmission mech-
anism remains inadequately understood (Altamimi and Ahmed, 2019).
Many contagious epidemics occur and wane away with a change in the
weather. Flu and other seasonal diseases such as norovirus vomiting
bug, pneumonia come in winter. Other diseases, such as typhoid and
summer fever, be likely to peak for the period of the summer season.
The infection ofMeasles cases declines in the temperate climatic regions
during the summer seasons, while the infection spread peaks in the
tropical regions especially in the dry period (Altamimi and Ahmed,
2019; Chan et al., 2011; Darniot et al., 2018; Davis et al., 2018; Gould,
2009; Jones, 2016; Keilman, 2019; Lee and Chowell, 2017; Merle et al.,
2018; Molineri et al., 2017; Morin et al., 2018; Paz and Semenza, 2016).

The thrilling weather condition and influence of temperature varia-
tion also triggered the spread of the West Nile virus in the European
world (Bhowmick et al., 2020; Liu et al., 2020d; Zhang et al., 2020). Re-
searchers are interested in knowingwhether therewill be any similarity
with the fast spread of COVID-19 or otherwise. Ever since it was first
identified in mainland China in the mid of December 2019, the virus
has spread very abruptly, with the number of cases increasingmore se-
verely in cooler regions such as European and North American coun-
tries. Many weather condition can be well-thought-out as the top
forecasters of respiratory syndromes such as SARS. Hydro-
meteorological variables can also have a direct association between
coronaviruses and humans being via biological interaction. Climate pa-
rameters may have a link with the fast transmission rate of COVID-19
(Armitage and Nellums, 2020; Auler et al., 2020; Méndez-Arriaga,
2020; O'Reilly et al., 2020). Optimum climatic parameters such as tem-
perature, wind speed, relative humidity, and precipitation can be con-
sidered as leading variable activating the existence and diffusion of
the viruses. Furthermore, weather changes and regional climate are
also verily associated with the pneumonia fatalities (Bhowmick et al.,
2020; Hoogeveen, 2020; Liu et al., 2020a; Liu et al., 2020b; Ma et al.,
2020; Qi et al., 2020; Schwartz, 2020; Tobías and Molina, 2020; Wang
et al., 2020; Zambrano-Monserrate et al., 2020; Zhang et al., 2020).

Numerous major pandemic outbreaks have occurred in the regions
where theweather intensity is extremes, leading to rumor that the pan-
demicmight begin to declinewith the influx of change inweather. Gen-
erally, the largest contiguous syndromes outbreak in the regions of
cooler weather, leading to the theories that high temperatures might
begin to the tail of in the summer season. It remains uncertain whether
or not high temperatures of certain degrees would successfully eradi-
cate the COVID-19, according to experts. In the meantime, COVID-19
is a new virus and no research to prove these theories so far from vali-
dation. Research on regional weather parameters and COVID-19 is also
quite limited. The following study opens new ways to understand and
prevent the spread of COVID-19 with its relation to climatic conditions
and related parameters.

2. Materials and methods

2.1. Study area

The study is accompanied by the countries and territories of the en-
tireworld. Computerized data of the COVID-19 cases until 5th June2020
was obtained from the official health department sources of all coun-
tries as well as from the world info meter of COVID-19 (https://www.
worldometers.info/coronavirus/). Fig. 1 shows the heat maps of con-
firmed cases, death cases, cases per million population, and death per
million population as of 5th June 2020 over 210 countries and territories
of the world. Furthermore, data of death cases, closed outcomes cases,
cases per million population were also obtained from similar sources.
Regional daily and monthly average climatological parameters of each
country were obtained from the concerned meteorological stations
and different international organizations to includeWorld Meteorolog-
ical Organization (https://www.wmo.int/datastat/wmodata_en.html),
NASA Earth Observatory (https://earthobservatory.nasa.gov/), NASA
Earth Observations (NEOs) (https://neo.sci.gsfc.nasa.gov/), Climate
data guide (https://climatedataguide.ucar.edu/climate-data), Climate
data online (https://www.ncdc.noaa.gov/cdo-web/), Global climate
change (https://climate.nasa.gov/), and Monthly climate reports
(NOVA). Monthly average temperature and daylight hours were calcu-
lated by averaging the daily based value. Furthermore, an overall aver-
age from January 2020 to May 2020 was calculated to find the
correlation between climate parameters and COVID-19 spread. A simple
linear association of the reported cases of COVID-19 and metrological
parameters was drawn.

2.2. Statistical analysis

The coefficient of determination (R2) was applied to analyze the as-
sociation among regional climatological parameters with average data
of high temperature, low temperature and day light hours with total
and death cases of COVD-19 reported until 5th June 2020. R2 is an esti-
mator used for the analyzing the mutual association among two differ-
ent data sets. It indicates that how one set of data set is well associate
the flow of other data sets. It shows the level of variability among data
sets.

3. Results and discussion

The occurrence of total cases and death cases, on the timeline, re-
ported in the different countries of the world is shown in Fig. 2. The
number of COVID-19 cases increases at an exponential rate from the
1st case identification to the selected study period i.e., 5th June 2020.
Some countries show a very rapid increase in the COVID-19 transforma-
tion despite their better socioeconomic condition and value of life. Most
of the cooler regions especially European and North American countries
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Fig. 1. The pandemic of COVID-19 over the entire world as of 5th June 2020, (a) total reported cases worldwide, (b) reported death cases worldwise, (c) reported cases per million
population, and (d) reported death cases per million population.
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show a rapid increase in the COVID spread. USA, Italy, Spain, France,
Germany, UK have a fast spread of COVID cases than India, Pakistan,
Bangladesh, Indonesia, and Malaysia despite their better quality of life.
Countries like Pakistan, India, Bangladesh, Indonesia are relatively
warm and humid countries (together they account for 25% of the
world population) but have slow growth of COVID-19 cases. The virus
does not multiply outside the living bodies but the contagious virus
may retain on different surfaces where the duration of retention of the
virus is influenced prominently by local weather conditions. Unclean
surfaces, weather conditions, and humanmass gatherings are notorious
to bemomentous vectors in the profligate contagions in the community
and regions. The COVID associated to human beings with the seasonal
flu and common cold was testified to remain workable only for a short
duration of 3 h on the different surfaces in an arid environment, though
it remains workable for more duration in humid environment Influenza
and RSV viruses reported viable for 2 and 6 h respectively after drying
on surfaces (Artika et al., 2020; Beeler and Eichelberger, 2013; Crisci
et al., 2013; Liu et al., 2020d; Zhang et al., 2020). Human coronavirus
(229E) on aerosolized shape is mostly less stable in high humidity and
temperature (Altamimi and Ahmed, 2019; Brugger and Rubel, 2009;
Chan et al., 2011; Gould, 2009; Hoogeveen, 2020; Li et al., 2018; Liu
et al., 2020a; Liu et al., 2020c; Lyth and Holbrook, 2015; Ma et al.,
2020; Mas-Coma et al., 2020; Morin et al., 2018; Nicholson and
Munoz, 2018; Otter et al., 2016; Schwartz, 2020; Sirisena and
Noordeen, 2014).

In the present study, the authors suggested that the COVID-19 virus
can stay alive after drying at a daily high temperature and in humid con-
dition for at least two weeks. In a liquid substance, SAR-COV-2 can be
stable up to 3 weeks at room temperature but can be killed easily at
the high temperature of 56 °C up to 15 min (Abduljalil and Abduljalil,
2020; Chow et al., 2003; Clark, 1993; Lee and Qureshi, 2013). Therefore,
results revealed that coronavirus is a more stable pandemic that can



Fig. 2. Total coronavirus cases in different countries of the world (a) Total confirmed cases per million population and (b) total death cases per million population by COVID-19.
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transmit by indirect contact or fomites. Moreover, this situation re-
vealed that tainted surfaces can show a vital role in the fast diffusion
of infection in the local community, isolation centers, and hospitals.
The present study revealed that unswerving droplet transmission is a
more dangerous and important route of virus broadcast from the in-
fected carrier. Moreover, fomites and environmental contaminated
aerosols may perhaps play a foremost role in the fast-spreading of the
virus. In nutshell, fomites may be a strong source of fast transmission
of the virus. Besides, to avoid from droplet transmission, frequent
hand washing for at least 20 s is recommended by WHO (Abduljalil
and Abduljalil, 2020; Akkina et al., 2019; Darniot et al., 2018;
Hoogeveen, 2020; Kandel et al., 2020; Lee and Qureshi, 2013; Lee and
Chowell, 2017; Lin et al., 2018; Merle et al., 2018; Nicholson and
Munoz, 2018; Nicola et al., 2020; Segars et al., 2020; Wang et al.,
2020; Zambrano-Monserrate et al., 2020).

A present study, revealed that climate parameters i.e. high tempera-
ture, as well as higher relative humidity, have a significant effect on in-
activation of COVID-19 transmission while low relative humidity and
low temperature support the prolong survival of COVID-19 virus on in-
fected surfaces (i.e. wood, metal, and glass) (Brugger and Rubel, 2009;
Chan et al., 2011; Darniot et al., 2018; Davis et al., 2018; Gould, 2009;
Jones, 2016; Li et al., 2018; Lyth and Holbrook, 2015; Morin et al.,
2018; Paz and Semenza, 2016; Sirisena and Noordeen, 2014).

Furthermore, another study has shown that during the pandemic
outbreak, the daily infected cases of COVID-19 were 18.18 fold higher
in days with a lower air temperature versus higher temperature days
i.e. Hong Kong and another part of the world. Collectively, this observa-
tion may be described that why some Asian countries in the tropical re-
gion (at high temperatures with higher relative humidity) i.e. Malaysia,
Thailand, and Indonesia are less affected by a coronavirus. COVID-19
virus can stay alive for two (2) weeks in low humidity and low-
temperature conditions which maybe guide the fast virus diffusion in
the respective country as in Hong Kongwhich track down in subtropical
zone (Ahmadi et al., 2020; Altamimi and Ahmed, 2019; Bhandari et al.,
2020; Bhowmick et al., 2020; Liu et al., 2020c; Robert et al., 2019;
Schwartz, 2020; Smith, 2019).

Moreover, other ecological aspects i.e. day sunlight, average maxi-
mum temperature, and the average minimum temperature had
shown association with coronavirus pandemic disease outbreak trans-
mission rate. The dynamic nature of this pandemic disease also involves
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multiple other factors i.e. out-door and indoor environment, physical
properties of virus (i.e. shape, size), space, hygiene and genetic changes
in different regions. Some authors find changes in shape in the size of
the virus in a different region of the world (Hansen et al., 2015; Kone
et al., 2017; Otter et al., 2016; Sprygin et al., 2019; Turnage and
Gibson, 2017).

Figs. 3 and 4 show the association of meteorological parameter and
COVID-19 total and death cases. Average low temperature, average
high temperature and daylight hours show a stronger relationship
with the total number of reported cases than death cases in different
countries of the world. The study provides a picture of COVID-19 cases
Fig. 3. Total COVID-19 cases per million population and climatic factors, (a) Total cases per mill
and average low temperature, and (c) Total cases per million population and average daylight
against meteorological conditions globally. The study observed a posi-
tive linear correlation among total COVID-19 cases and average high
and low temperatures with a coefficient of determination of 0.4016
and 0.4668, respectively, while a linear correlation among total
COVID-19 death cases and average high and low temperatures with a
coefficient of determination of 0.1987 and 0.3008, respectively. Further-
more, a positive linear correlation was also observed among average
daylight hours and total COVID reported cases with a coefficient of de-
termination of 0.3698 and death cases with a coefficient of determina-
tion of 0.4834. This association is supported by the previous studies
which show the relationship between regional meteorological
ion population and average high temperature, (b) Total death cases per million population
hours.



Fig. 4. Shows relationship between COVID-19 cases per million population in the different countries of theworld until 5th June and climatic parameters (a) average low-temperature vs a
total number of death cases permillion population, (b) average high temperature vs death cases permillion population, (c) average low-temperature vs total number of reported cases per
million population (d) average high-temperature vs total number of reported cases permillion population (e) averagedaylight hours vs total number of death cases permillion population,
and (f) average daylight (hours) vs total number of reported cases per million population.
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conditions and transmissions of different contagious diseases such as
common cold flu and human coronaviruses (Coverstone et al., 2019;
Keilman, 2019; Li et al., 2018; Liu et al., 2020b; Ma et al., 2020; Otter
et al., 2016; Pattison, 2020; Paz and Semenza, 2016; Yang and Sarfaty,
2016). Conversely, to our study of COVID-19 which outbreak in winter
season in Wuhan City, China, Altamimi and Ahmed (2019) reported
that the fast spread of novel coronavirus, MERS-CoV which outbreak
in summer season in Riyadh is increased with high temperature, low
wind speed, as well as the high ultraviolet index, and low relative
humidity.

Furthermore, we have explored the linear correlation between am-
bient temperature and infected total confirmed COVID-19 cases with
the help of the coefficient of determination model. The average daily
temperature and daylight hours for the study period from 1st COVID
case detection to the 5th June shows the positive linear relationship in
the different countries of the world, indicating that as the local weather
conditions altered the transmission of the virus may be declined. Previ-
ous studies have shown that local weather condition such as tempera-
ture, humidity, and precipitation is also a vital aspect in the existence
and broadcast of other coronaviruses, like influenza viruses, retrovi-
ruses, MERS, poxviruses, Severe acute respiratory syndrome (SARS),
and paramyxoviruses (Altamimi and Ahmed, 2019; Beeler and
Eichelberger, 2013; Hansen et al., 2015; Jones, 2016; Kone et al., 2017;
Lee and Qureshi, 2013; Lee and Chowell, 2017; Li et al., 2018; Lin
et al., 2018; Morin et al., 2018; Otter et al., 2016; Paz and Semenza,
2016; Salehuddin et al., 2017; Yang and Sarfaty, 2016). Previous studies
were only confined to a single country and smaller region, but the fol-
lowing study analyzed the most countries of the world.



7M.M. Iqbal et al. / Science of the Total Environment 739 (2020) 140101
Some studies conducted in Hong Kong, Beijing, Guangzhou and Tai-
yuan on SARS cased and conclude that 16–28 °C temperature is opti-
mum. While, other studies found the negative relationship of
temperature and SARS transmission in both countries Beijing and
Hong Kong during 2003 (Abduljalil and Abduljalil, 2020; Chan et al.,
2011; Chow et al., 2003; Decaro and Lorusso, 2020; Lin et al., 2018;
Otter et al., 2016). Casanova et al. (2010) found that viruses were inac-
tive more rapidly at 20 °C than 4 °C.

Furthermore, de Sousa et al. (2014) perform the test in the labora-
tory for coronavirus laboratory testing on coronavirus and revealed
that virus was stable for 5 days on a smooth surface in between
−25 °C to 22 °C but its visibility swiftly vanished at high temperature
e.g. 38 °C and above. van Doremalen et al. (2020) also revealed that
virus MERS-CoV was also not as active at high temperatures. Moreover,
many other studies revealed that moderate temperature range is opti-
mum and feasible for coronavirus growth and expansion but in high
temperature, was harmful to it viability and also help in the reduction
of its spreading (Loeffelholz and Tang, 2020). Therefore, further labora-
tory testing and experiments are also dire need to be done further
strengthen of this myth (Corman et al., 2012; de Sousa et al., 2014;
Shahkarami et al., 2015). In Pakistan andmany other countries are hav-
ing long and hot summer so it might be a chance of less effected by
COVID-19.

In nutshell, minimum temperature or below 3 °C in the winter sea-
son leads to high risk for its fast transmission in those countries,
which are having long and cold winter. This provides very remarkable
information for policymakers, may be COVID-19 exist for a long time
until the development of a proper and effective vaccine (Liu et al.,
2020c; Ma et al., 2020; Robert et al., 2019; Schwartz, 2020; Smith,
2019; Tobías and Molina, 2020). There are some limitations, i.e. we
did not analyze the results in subgroup bases, i.e. gender, different age
ranges, due to maximum missing information worldwide.

Without a proper vaccine, social distancing is the only new norm
adopted to reduce the transmission effect of COVID-19. When a few
cases of COVID-19 have been reported than every country announces
the lockdown and SOP of social distancing. Yezli and Khan (2020) re-
ported that the implementation of social distancing rules and regula-
tions is a challenge due to its various norms of society, i.e. social and
religious activities, annual hosting of various festivals, national and in-
ternational festivals, and religious mass gatherings.

Moreover, it has been confirmed that the COVID-19 can spread
through droplets created by infected human coughing or sneezing or
touching. To overcome the droplet infection rate, 1.83mdistance for so-
cial distancing is recommended, which is based on assumptions. How-
ever, no study was conducted yet on droplet transmission in the air
(wind) and relative humidity (RH). Feng et al. (2020) validated compu-
tational fluid-particle dynamics (CFPD) model to simulate the transient
transport, condensation/evaporation, and deposition of SARS-CoV-2
laden droplets (2–2000 μm) emitted by coughs, with different environ-
mental wind velocities (0–16 km) and RHs (40% and 99.5%). The social
distances were maintained at 1.83 and 3.05 m (6 and 10 ft). The facial
covering effect is also under investigation. Numerical results revealed
that micro-droplets can travel in the air more than 3.05 m distance.
RH also helped in increasing the droplet size. Moreover, it is concluded
that, within complex environmental wind and RH conditions, social dis-
tancing policy of 1.83 m (6 ft) is not sufficient to protect the person.
Coughing or sneezing droplets of an infected person can infect the
other human in less than 5 s. Therefore, a social distancing longer than
1.83 m (6 ft) needs to be considered.

Some countries i.e. Australia, USA, Italy, France, the UK, and Europe
having a high literacy rate and quality of life as compared to other
under developing countries i.e. Pakistan and India. Without proper so-
cial distancing and wearing masks, per million effected cases and per a
million deaths are less in Pakistan and India because both countries
have a high temperature in March–June as compare to other countries.
Australia is having a high population density at its habitat area because
in themid of Australia, there is a desert and very less population density
is there. On the other hand, populated areas are undermoderate climate
conditions, which cause a high/less number of COVID-19 cases.

4. Conclusion

This study explored the effect of nativeweather disorders on the fast
spread of COVD-19 worldwide. The novel coronavirus is convincingly
influenced by the local weather conditions in the different parts of the
world from their 1st case identification to the 5th June 2020. The spread
of the COVID-19 appears to be faster in cooler regions. The average tem-
perature and daylight hours have shown a positive association towards
the spread rate of COVID-19.Hence, regionalmeteorological parameters
(aerosols, maximum and minimum temperature, day length, etc.) are
among the contributors to the fast spread of coronavirus over most
countries of the world. This study gives evidence that the fast spread
of cases of COVID-19 could diminishwhen the local weather conditions
becomewarmer.Most of theAsian countries have a high temperature in
May–June, they have shown less number of affected cases per million
population i.e. Vietnam, Laos, Pakistan, India, etc. This study suggest
that along with proper management such as social distancing and
hand washing, long summer may also slow down the spread of pan-
demic disease. This study provides useful inferences for health depart-
ments and decision-makers in defeating and understanding the fast
spread of COVID-19.
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