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ABSTRACT After the onset of the recent COVID-19 pandemic, a number of studies reported on possible
changes in electricity consumption trends. The overall theme of these reports was that ‘‘electricity use has
decreased during the pandemic, but the power grid is still reliable’’—mostly due to reduced economic
activity. In this paper, we analyze electricity data until the end of May 2020, examining both electricity
demand and variables that can indicate stress on the power grid. We limit this study to three states in the U.S.
California, Florida and New York. The results indicate that the effect of the pandemic on electricity demand
is not a simple reduction, and there are noticeable differences among regions analyzed. The variables that
can indicate stress on the grid (e.g., daily peak and trough of the hourly demand, demand ramp rate, demand
forecast error, and net electricity interchange) also conveyed mixed messages: some indicate an increase
in stress, some indicate a decrease, and some do not indicate any clear difference. A positive message is
that some of the changes that were observed around the time stay-at-home orders were issued appeared to
revert back by May 2020. A key challenge in ascribing any observed change to the pandemic is correcting
for weather as it can be challenging to accurately define it for large geographic regions. We provide a
weather-correction method, apply it to a small city-wide area in North Central Florida, and discuss the
implications of the estimated changes in demand. The results indicate that a 10% (95% CI [2%, 18%])
increase in electricity demand is likely to have occurred due to COVID-19 for the city analyzed.

INDEX TERMS Electricity, COVID-19, power grid operation, regression, weather correction, forecasting.

I. INTRODUCTION
Reliable electricity supply is a fundamental service for a func-
tioning society. Since a large part of the workforce is working
from home due to the COVID-19 pandemic, uninterrupted
electricity supply has become evenmore important. The other
important service for the nation’s productivity during these
unprecedented times is Internet, for which electricity is a
prerequisite. Thus, the potential impact of the COVID-19
pandemic on electricity supply and demand is of interest to
many.

Understanding demand changes is important to balancing
authorities that are in charge of maintaining reliable opera-
tion of the power grid. The New York Independent System
Operator (NYISO) has reported large drops in electricity
demand after the pandemic, in the range of 10% below typical
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levels [13]. California ISO used a backcasting method to
account for weather, and reported a reduction of 0.5−12% in
hourly demand in the week after the stay-at-home order [4].
A reduction of electricity consumption to the tune of 10%
in Europe is reported in [6]. A number of media reports
have drawn from these studies [2], [16]. More recently, the
Energy Information Agency (EIA) reports that while electric-
ity demand seems to have reduced in many parts of the U.S.,
there are variabilities in these trends, and specifically Florida
demand trends appear not to indicate a reduction [8].

Reliability of the nation’s electricity system depends less
on electric energy consumption than on variability of demand
and generation. Large changes in demand makes it harder for
the operators of the power grids to maintain demand-supply
balance, which is critical for reliability. So far, the power
grids throughout the U.S. have continued to deliver elec-
tricity reliably. Grid operators took special precautions early
on to prevent disruptions to grid operations due to the
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pandemic [12], [17]. Some potential issues such as the chal-
lenges of refueling nuclear power plants are being worked
out. In contrast to electricity demand, there is a lack of studies
examining the effect of the COVID-19 mitigation measures
on the power grid’s reliability.

Majority of the studies described above were published
soon after the stay-at-home orders were issued. As more time
has passed since, it is useful to examine the data again to see
if the trends reported in the early studies hold.

In this paper, we analyze data from U.S. Energy Infor-
mation Administration (EIA) until the end of May 2020 to
examine trends in electricity demand and indicators of stress
on the power grid. We focus on data from three states in the
U.S.: California, Florida and New York. There are two main
reasons for this short list. One, these three states are similar
in the nominal electricity consumption but distinct in both
geography, demographics, and prevalence of COVID-19.
Two, prior work exist on California and New York, but little
on Florida, except for the EIA analysis [8] that indicated the
trend in Florida was distinct from other studies.

Assessing the impact of the pandemic on electricity
consumption requires correcting for weather, so that the
weather-independent part of demand can be extracted. It is not
trivial to do so even for a single consumer [1], [10]. Correcting
for weather on aggregate demand in a large geographical area
is far more challenging. The studies that corrected for weather
had to make assumptions and approximations to handle this
geographic variability [6], [15]. Our analysis of the three large
regions is therefore based on the raw data to avoid the uncer-
tainty introduced by the model used for weather correction.
In the last section of the paper, we performweather correction
of electricity demand from a small balancing authority in
Florida for which weather can be defined clearly. In this
particular area, weather corrected demand shows an increase
due to the pandemic. This weather correction exercise also
reveals the limit on the conclusions that can be made about
the effect of the pandemic on electricity demand.

In writing this paper, we have excluded macro-level vari-
ables such as Gross Domestic Product (GPD) and population
growth from our analysis. The main rationale for this was
to isolate the impact of COVID-19 impact on US electric
demand, and our approach in achieving this was to keep the
analysis periods short and use the most up to date data we
could access. Perhaps there is some merit in looking at long
term impact of COVID-19 on US electric market, but that
assessment would require data that is not currently available
and such an assessment is outside the scope of this paper.

The rest of the paper is organized as follows. Section II
analyzes electricity demand trends to identify impact of the
pandemic on demand. Section III analyzes four variables
(peak demand, demand ramp rate, forecast error and inter-
change) to assess if the pandemic is changing the stress on the
grid. Section IV presents a weather correction method and its
application.

All the analysis were conducted in Python computer lan-
guage [18] primarily using pandas, numpy and sci-kit learn
packages [3], [11], [14] for data processing and analysis, and
matplotlib and seaborn packages [9], [19] for plots.

II. ELECTRIC ENERGY DEMAND TRENDS
The daily electricity demand trend in Florida is shown in
Figure 1. Apart from a temporary drop just before and after
the statewide stay-at-home order, daily demand has an overall
increasing trend across the two month period of March-May,
2020. The trend also does not seem to be correlated to that
of the same period in 2019. The lack of a clear trend indi-
cates that if the pandemic has had an impact on electricity
demand, it will only become clear after the effect of weather
is accounted for.

Figure 2 compares the daily electricity demand in
California forMarch-May 2020 and 2019. Electricity demand
appears to have decreased after the State of California issued
the stay-at-home order. This is consistent with the obser-
vations in the report [17]. However, the demand trend in

FIGURE 1. Daily electricity demand for Florida for March-May 2019 and 2020 (The first Monday of March for both years
are vertically aligned).
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FIGURE 2. Daily Electricity Demand for California for March-May 2019 and 2020 (The first Monday of March for both
years are vertically aligned).

FIGURE 3. Daily electricity demand for New York for March-May 2019 and 2020 (The first Monday of March for both
years are vertically aligned).

subsequent weeks, particularly the last week of May, is not
consistent with a reduction. The 2020 demand not only
appears to have reached to pre stay-at-home order levels, but
also closed the gap with 2019 demand levels and surpassed
them in late May.

The daily electricity demand in New York is shown
in Figure 3. At first glance it appears to be consistent with
the findings of the earlier studies [6], [17] (the latter was
about Italy). However, further analyses—which we describe
below—indicated that it will be inaccurate to infer from this
data that the pandemic caused the demand reduction.

First, we compared the daily electricity demand for the
state of New York from January to May for 2019 and
2020 (figure not shown). The data shows that the electricity
demand for 2020 has been consistently lower than 2019,
meaning the reduction could be due to factors other than the
pandemic, such as weather.

Second, to further assess whether these trends are signifi-
cant or not, we fitted simple linear regression models to data

from both years. The models were daily electricity demand
regressed over an array representing days passed from the
first Monday of January for each month. Both models are
significant and almost identical in parameter estimates.

Thus, comparisons with weeks immediately before and
after the stay-at-home order to identify impact of the pan-
demic should be done with care. No clear change is apparent
after stay-at-home order in NY. Rather, the post-lockdown
trend seems to be a continuation of the pre-lockdown trends.
The overall conclusion about daily electricity demand is that
the effect of the pandemic, if there is an effect at all, is not
easily seen without correcting for weather.

III. ANALYSIS OF VARIABLES THAT CAN REVEAL STRESS
ON THE POWER GRID
Reliable electricity supply requires a healthy power grid,
which requires maintaining demand-supply balance at all
times. Therefore, we analyze a number of additional vari-
ables which can impact demand-supply balance directly
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FIGURE 4. Distributions of daily peak demand (of hourly energy) in three regions in the US. Data from Jan - May,
during 2019 and 2020, are used to estimate the pdfs.

or indirectly, with a goal to detect changes due to the
pandemic.1 Any significant change in these variables will
indicate changes in the stress on the nation’s power grid.

In the following, dk denotes the electricity demand (MWh)
at hour (ending) k , where k = 1, . . . , 24 is an hour counter.
1) Daily peak and trough of the hourly demand, defined

as the maximum and minimum of the hourly electric-
ity demand over a 24-hour period. A large value of
the peak demand, particularly when it is significantly
different from the base load, means additional peaker
plants have to be brought on-line. Apart from increas-
ing cost, reliance on peaker plants reduces reliability
since grid operation becomes sensitive to potential fail-
ure or unavailability of these plants.2

2) Demand ramp rate, defined as the difference between
the hourly demand in an hour and the previous hour,
i.e., dk − dk−1. Rapid and large changes in demand
makes it harder for grid operators to balance demand
and supply since generators are limited in their ability
to increase or decrease generation. A large demand
ramp rate is thus a measure of added stress on the grid.

3) Day ahead demand forecast error, defined as the dif-
ference between the actual demand in an hour and the
forecasted demand for that hour computed a day earlier.
Grid operators compute forecasts for hurly demand
24 hours in advance (among many other types of fore-
casts). Many aspects of grid planning and operation,
including unit commitment, will be inadequate in case
of large forecast errors. The grid operator then has to
procure more generating resources in real time. Also,
a change in the forecast error can indicate a change in
consumer behavior, all else remaining constant.

1Many of these variables, such as peak demand, should have the unit of
power (MW or GW), not the unit of energy (MWh or GWh). However, since
the only data we have are hourly energy data, we have defined all quantities
in terms of hourly energy use, and thus they all have the unit of energy.

2Unavailability can occur due to various reasons, not just mechanical
problems at the plant. For instance, if the grid operator does not expect the
demand to be large it may not offer contracts ahead of time for the plants to
be ready.

4) Net interchange, defined as the electric energy
exchanged between a region and its neighboring
regions every hour through the transmission network
interconnecting them. It is positive if the net energy
exported is greater than that imported. A large inter-
change, and large variations in interchange over time,
puts more stress on the transmission lines. Thus,
changes in the trend in interchange is also a sign of
potential change in grid’s operational condition.

A. PEAK (AND TROUGH) DEMAND
Figure 4 shows the so-called violin plots, i.e., empirical
probability density functions (pdfs) estimates of the daily
peak of the hourly demand (MWh per hour) for three states:
Florida, California and New York. Data from Jan-May of a
year (2019 for the left and 2020 for the right side of the plots)
is used to estimate the pdf, using the kernel density estimator
with a Gaussian kernel.

We see from the plot that only New York consumption
trend appears to have shifted down from 2019 to 2020, both
expected and extreme daily peak hourly demand values are
lower in 2020 when compared to 2019. The median and
lower values of the distribution for California is comparable
for both years, while much greater values are observed at
the higher end of the distribution in 2020. Florida has sim-
ilar distributions for both years with lower extreme values
for 2020. If peak hourly demand were the sole determinant
of the stress on the grid, we could conclude that the stress on
grid operation has reduced in New York, but the impact is not
clear for California and Florida.

To check if there is a change in the peak demand because of
the pandemic, or if the change routinely occurring throughout
January-May 2020, we also look at the data in time domain.
Figure 5 shows the daily peak and trough of the hourly
electricity demand for Florida, California and New York.
In California and Florida, both the peak and trough were
greater in March 2020 than in March 2019. Following stay-
at-home orders, both peak and trough has decreased making
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FIGURE 5. Daily peak-trough of hourly demand for each day, March-May 2019 and 2020 (The first Monday of March 2019 is
aligned with the first Monday of March 2020).

FIGURE 6. Probability densities of hourly demand ramp rate, with 4 weeks of data after the stay-home order in 2020, and the corresponding
period in 2019.

their difference comparable to those observed in 2019. But
then it changed back to pre-pandemic levels in late April.

The trend in New York is different from those in California
and Florida. The peak and trough of hourly demand decreased
consistently throughMarch and April, in both 2019 and 2020.
Also, it did not show the ‘‘springing back’’ effect seen in
California and Florida until (for a brief time) at the end of
May (2020). We also extended the analysis period to January,
and a similar trend to daily total demand was observed here.
Both peak and trough demand for 2019 and 2020 steadily
declined from early January to the late May.

B. DEMAND RAMP RATE
Figure 6 compares the empirical probability density func-
tions (pdfs) of the hourly demand ramp rate for the three
states in 2020 (after the pandemic) and 2019 (correspond-
ing period). The pdfs are estimated using data for a

four week period, starting on the statewide stay-at-home
order for the corresponding state, and for the same period
in 2019. In Florida, although the pdf has changed after the
stay-at-home order compared to the same period in 2019,
the frequency of larger values did not change significantly.
There is no clear change in California. In New York, larger
ramp rates are observed less frequently after the pandemic
in 2020 than in 2019, meaning hourly demand is changing
more slowly. From the point of view of grid operation, that is
a positive change.

These trends have appeared after the pandemic, and are
not part of a long term change in statistics of ramp rate.
Figure 7a, which compares the pdfs in January 2020 with
those in January 2019, support this observation. Ramp rate
statistics during January 2020 are quite similar to those
in 2019. Another observation is that the trends that appeared
right after the pandemic have stayed that way and have not
reverted back; see May 2020 pdfs in Figure 7b.
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FIGURE 7. Probability densities of hourly demand ramp rate, during months away from the pandemic (before and after).

C. DEMAND FORECAST ERROR
Recall that the hourly demand forecast error is dk− d̂k , where
d̂k is the forecast of hourly demand dk computed 24 hours
earlier. The time series of hourly forecast error is highly non-
stationary. So we start with the daily average of the hourly
data. Figure 8 shows the daily mean of the hourly forecast
error, for 2020 and 2019 trends, from January to May.

Figure 8 shows that in California, the mean forecast error
is considerably smaller in 2020 than in 2019. It appears
that 2019 was an outlier year: the 2018 forecast errors were
considerably smaller than those in 2019 as well. This makes
it impossible to compare the statistics after the pandemic
with those from the corresponding period in 2019 in any
meaningful manner. Therefore, we ignore California in the
rest of the discussion on forecast error, although we show the
plots for the sake of completeness.

For Florida and California, themean forecast error does not
show a clear trend that is correlated with the pandemic. We,
therefore, examine the empirical pdfs to get a more detailed
picture of the demand forecast errors. Figure 9 compares the
empirical pdfs of the hourly forecast error during a four-week
period after the stay-at-home order in 2020 with those from
the same period in 2019. There is a discernible difference
between the 2020 and 2019 statistics—forecast errors have
increased for both Florida and New York after the pandemic.

To address the question about whether these changes are
really due to the pandemic or simply a part of a long
change between 2019 and 2020 already underway, we com-
pare the pdfs within 2020, before and after the pandemic.

It appears that the pandemic is the likely cause, as the forecast
errors in January 2020, before the pandemic, were signifi-
cantly smaller than in March/April (Figure 10a). In addition,
the forecast errors in NY show a clear ‘‘springing back’’
effect, but not in Florida (Figure 10b).

Overall, the day ahead demand forecasts have been nega-
tively affected by the pandemic in both Florida andNewYork.
In New York, they have recovered to pre-pandemic levels by
May but not in Florida.

D. TOTAL INTERCHANGE
Figure 11 shows the daily average of the hourly interchange
from January-May, and compares them between 2019 and
2020. There is no discernible pattern that can be attributed to
the pandemic, or for that mater, anything else. The time series
of hourly interchange data is highly non-stationary, with vari-
ations in both short and long time scales. We therefore do not
present histograms: a much more extensive analysis will be
required to reveal anything useful.

IV. CONTROLLING FOR WEATHER
Methods for weather correcting energy/electricity demand
data are typically based on cooling degree day and heat-
ing degree day. The cooling degree day of a time duration
with average temperature T is the the cooling degree TC =
max(T − Tc,stpt, 0) times the number of days that the cooling
degree is positive. The cooling setpoint Tc,stpt is an average
measure of ambient temperature abovewhich consumers start
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FIGURE 8. Daily average of the hourly demand forecast error, 2020 vs. 2019.

FIGURE 9. Hourly demand forecast error probability densities, with data from a four week period starting on the day stay-at-home order was
issued. The 2019 data was for the corresponding period.

using space cooling.3 Heating degree day (HDD) has a simi-
lar definition, except now the excess temperature is the heat-
ing temperature TH := max(Th,stpt−T , 0), where the heating
setpoint Th,stpt is an average measure of ambient temperature
below which consumers start using space heating.

In the simplest model used for weather correction, elec-
tricity demand in a time duration with average temperature T ,
and corresponding cooling degree day TC and heating degree
day TH , is modeled as d = αCTC + αHTH + b where b is
the baseload, i.e. the weather-independent part of the demand,
and αC , αC are coefficients. To perform weather correction,

3Formally, the cooling degree time of an arbitrary time period τ is the
area under the cooling degree curve plotted as a function of t . That is,
CDT[τ ] =

∫ τ
0 TC (t)dt , where TC (t) =max(T (t) − Tc,stpt, 0) is the time

varying cooling degree. If the integral is expressed in °F-hour (or °C-hour),
we call it a cooling degree hour (CDH). Frequently it is expressed in °F-day
(or °C-day), and we call it a cooling degree day (CDD). A hypothetical day
that is a constant 2° F hotter than the cooling setpoint throughout the day
will have a CDH of 48 °F-hour, or a CDD of 2°F-day. A day that is 2° F
hotter than the cooling setpoint for 6 hours of the day will have a CDH of
12 °F-hour and a CDD of 0.5°F-day. A similar definition is used for heating
degree hour (HDH) or heating degree day (HDD). Heating degree day (HDD)
has a similar definition, except now the excess temperature is the heating
temperature TH (t) := max(Th,stpt − T (t), 0).

the unknown constants αH , αC , b are determined from pre-
event data. Then, the demand for a time interval of equal
length after the event occurs is predicted as d̂ = αCTCk +
αHTHk + b, where TCk ,T

H
k are now computed from mean

ambient temperature observed after the event, with αC , αH , b
previously estimated. This prediction d̂ is a counterfactual
demand, the demand that should have have been observed
under the post-event weather if nothing other than the weather
were to change from pre-event to post event. The prediction d̂
is referred to as the weather corrected demand4

For greater resolution and accuracy, the baseline demand
can be modeled as a time varying quantity. This is what we
do in this paper, and describe next. Recall that each hour
is denoted by a discrete counter k = 1, . . . , and dk is the
electricity demand during hour k and Tk is the mean ambient
temperature during hour k . The cooling and heating day
definitions above are applied to hourly samples, leading to

4There are in fact many methods for weather correction of energy data,
though they almost always use concepts of cooling and heating degree days.
These methods are known to suffer from many weaknesses. An excellent
summary of the difficulties with weather correction using degree days can
be found in [1].
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FIGURE 10. Empirical probability densities of the hourly demand forecast errors. Each pdf is computed with data from a four week period, except
for those for May 2020.

FIGURE 11. Mean interchange, 2020 vs. 2019.

a cooling degree TCk = max(Tk − Tc,stpt, 0) and heating
degree TCk = max(Th,stpt − Tk , 0) at hour k , etc. We use
the followingmodel of hourly electricity demand, where hour
k = 1 corresponds to 01:00:00 of Monday (morning):

dk=αH (THk )2+αC (TCk )2+bk , k = 1, . . . , 168(= 24× 7)
(1)

Justification for the quadratic terms is that the data we used
(described in the next section) showed such a relationship—
when electric energy demand was plotted against cooling
and heating degrees. The quantity bk is the hourly baseline

demand, which is independent of weather. The index k in (1)
only goes up to 7 days: we have assumed that consumer
behavior that determines weather-independent electricity
consumption does not change from one week to another.

If we only have one week’s worth of hourly data, there
are 2 + 168 = 170 variables in this model, with 168 mea-
surements, so the model is highly under-determined. Almost
any week’s data can be explained by such a model extremely
well, but its predictive power cannot be assessed since there
is no data left to be used for out-of-sample testing. We can
use additional data from other weeks which will increase the
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number of equations of the form (1), while the number of
parameters to fit remain the same since we have assumed
that the baseload bk does not change from week to week. The
170 unknown parameters can then be estimated from the data,
for instance, by ordinary least squares.

Suppose we have m weeks of data. With hourly data col-
lection, the sample index k goes from 1 to 168 × m. To be
able to describe the model and the data in standard regression
form, we write it as

dk = αH (THk )2 + αC (TCk )2 + bk ′ , k = 1, . . . ,m× 168

(2)

where k ′ = k mod 168. The model (1) can be written com-
pactly as dk = φkθ , where the unknown parameter vector θ
is

θ = [αH , αC , b1, . . . , b168]T ∈ R170 (3)

and the regressor is the row vector

φk =
[
(THk )2 (TCk )2 0 0 . . . 0 1 0 . . .

]
(4)

in which the 1 appears on the 2 + (k mod 168)-th column
position. The corresponding linear equation becomes

d = 8θ (5)

where d = [d1, d2, . . . , dn]T ∈ Rn, with n = 168 × m
denoting the total number of hourly time samples, and
8 = [φT1 , φ

T
2 , . . . , φ

T
n ]

T
∈ Rn×170. The ordinary least

square (OLS) estimate of the unknown parameter θ is the
solution to the normal equation5:

(8T8)θ = 8T d ⇒ θ̂ = (8T8)−18T d . (6)

The weather correction method with this model is the same as
in the simpler model. Suppose the model is trained with data
from year 2019, and denote by θ̂ (2019) the parameter estimate
from the training. The weather corrected demand at hour k
during 2020 is the demand predicted by themodel for weather
during the same hour of week in 2020:

d̂ (2020/2019)k = φ2020k θ̂ (2019), (7)

where φ2020k is the regressor for that hour during 2020, which
is constructed from temperature measurements at hour k
in 2020 and time of week that k corresponds to. The quantity
d̂ (2020/2019)k is counterfactual, it is the demand that should
have been observed in 2020 had nothing other than the
weather changed from 2019 to 2020.

An example of the model’s in-sample and out-of-sample
prediction is shown in Figure 12. The data used is described in
Section IV-A. The model was trained with 2019 March data,

5Technical requirements such as full column rank of 8 are satisfied by
the data to which we applied the method. Ideally, one should pose the model
training problem as a constrained optimization problem with the constraint
that all the unknown parameters are non negative, but OLS never returned a
negative estimate for the data we used, meaning that if such a constraint were
used the solution would have been the same.

so the predictions for 2020 and 2018 are out-of-sample pre-
dictions. The mean and standard deviation of the fitting error
ek = (d2019k − d̂ (2019/2019)k )/d2019k are −1.4% and 7.7%,
respectively. The R2 value of the fit is 72%.

A. APPLICATION TO GRU (GAINESVILLE REGIONAL
UTILITIES)
The immediate difficulty in applying the weather correction
method described above is the ambiguity in defining the
ambient temperature Tk . One can perhaps take a weighted
average over many weather stations, with measurement of
a station weighted by the number of consumers around that
station etc., but this method introduces more design choices
that affect the model’s prediction. To avoid this, we apply
the weather correction method to Gainesville Regional
Utilities (GRU). GRU’s service area is confined to the city of
Gainesville, FL, and a small area nearby. Apart from being an
electric utility, it is also a balancing authority (BA). Because
GRU is a BA, hourly data from GRU is available from EIA.

The model (1) was trained with hourly electricity data for
GRU and weather data for Gainesville, for March 2, 2019,
to March 31, 2019.6 It was then used to predict the energy
consumption for March and April 2020 by using weather
data for that time period. Temperaturemeasurements from the
University of Florida (UF) weather station, available through
alachua.weatherstem.com was used, since the UF campus is
in the middle of GRU territory. The model’s fitting error is
sensitive to the choice of setpoints Th,stpt,Tc,stpt. We therefore
chose the values of the setpoints based on an exhaustive
search that led to the smallest fitting errors. These values are
Th,stpt = 64° F and Tc,stpt = 72° F.

Figure 13 (top) shows the change in daily electricity
demand during March-April of 2020 from the counterfactual
demand with 2020 weather, i.e., what should have been the
demand had there been no change in baseload demand from
the same time 2019. More precisely, it shows the difference

e2020/2019t := d2020t − d̂ (2020/2019)t (8)

in the daily electricity use dt as a percentage of average
daily energy use in February 2020; the index t increments
by 1 every day.

It appears there is an increase of about 10% in daily
electricity demand around the stay-at-home order issued by
the Alachua city that GRU territory is within. This raises a
number of questions, which we address next.

1) Is it really a 10% increase? The mean and standard
deviation of the prediction error et for the training
data is 0.6% and 3.9% and similar for the out-sample
testing data from 2018; see Figure 14. Since the mean
is so small, we assume the model’s predictions are
unbiased, and use 0 as the mean error for out of sample
predictions. Thus, we can conclude that there is a 95%
probability that the change in daily demand is between

6EIA’s data was missing for several hours on March 1, 2019.

VOLUME 8, 2020 151531



D. Agdas, P. Barooah: Impact of the COVID-19 Pandemic on the U.S. Electricity Demand and Supply: An Early View From Data

FIGURE 12. Hourly demand prediction for 3 distinct years by the model (1) trained with 2019 March data. The x-axis
starts on the first Monday of March for each year.

FIGURE 13. Weather corrected daily energy demand in 2020 for GRU: difference between 2020 demand and its predicted
value by the model (1). The stay-at-home order was issued by the Alachua county to take effect on March 24, 2020.

2% and 18% of the February 2020 mean.7 There is
a 99% probability the increase is between −2% and
22%. Thus, while there is a likely increase in demand,
quantifying the increase with higher confidence will
require additional modeling and analysis.

2) Why not ‘‘improve’’ the model? The model only
resolves baseload demand within a week, but ignores
seasonality over longer time scales. To avoid overfit-

7The 95% confidence interval is ±2σ away from the mean, and 99%
confidence interval is ±3σ , assuming the errors are Gaussian. The residual
of the trained model show Gaussian-like distribution (figure not shown).

ting, we must use a sufficient number of weeks of data
for training, so that n = 168 × m � 170. At the same
time, we cannot use too many weeks of data, since that
data will surely violate the assumption that weather-
independent baseload does not change from week to
week. One can allow the baseload to vary across weeks
ormonths, introducing additional free parameters in the
model. One can also introduce more free parameters
for holidays and special events. But doing so will soon
lead to overfitting: the model will have nearly as many
free parameters as the number of measurements used
to estimate them. There will be little data left to test
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FIGURE 14. Change in weather corrected daily energy demand for GRU during March-April for two
pre-pandemic datasets. The model is trained with 2019 data, so the top plot shows the in-sample prediction
error.

for out-of-sample prediction accuracy of the model.
For the model to be trustworthy, it is not enough for
the model to fit the training data accurately. The out-
of-sample prediction accuracy of the model also needs
to be high. Only then, we can have confidence on the
underlying assumptions of the model. Since the model
is trained for March data, its validity reduces as we go
further away from March. Therefore,we do not use it
for May and beyond.

3) Why did the demand increase before stay-at-home
order?Assuming the model’s prediction of an increase
in electricity demand is correct, why did the increase
occur even before the order? In other words, can we
blame the pandemic for the increase in demand? We
believe so. Although GRU does not serve the Uni-
versity of Florida campus, the majority of Gainesville
residents and, thus, GRU customers are directly or
indirectly related to the university. In an email on
March 11, 2020, the University declared that all classes
will be moved online by Monday, March 16, and rec-
ommended all students to return to their homes. It is
thus very likely that many GRU customers started to
work from home by March 16, 2020, and did not wait
until March 24, when Alachua County issued its stay-
at-home order.8 This may be the reason for the increase
seen from March 17 onwards in Figure 13.
Although we can only speculate for the reasons of the
increase in electricity consumption due to the pandemic
in GRU, it is possible that the large residential con-
sumer base of GRU, coupled with the lack of large
industries in its territory, played a role. If that is the

8This is certainly true for the authors of this paper.

case, this is an example in which potential9 reduction of
electricity consumption in commercial buildings after
the pandemic is more than offset by the increase in
consumption in residences due to more people staying
and working from home.

V. SUMMARY AND CONCLUSION
Unlike previous analyses that were done soon after the pan-
demic started, our analysis benefits from examining data over
a longer period of time. We found that contrary to the obser-
vations in prior work, none of these three regions analyzed
(California, Florida and New York) showed a clear reduction
in the demand that can be ascribed to the pandemic.

In both electricity demand and variables, such as peak
demand that can indicate stress on the power grid,
we observed large variability from one region to another. This
is consistent with EIA’s recent analysis on electricity demand
across the U.S. In addition, while some of the indicators
showed a change in their statistics around the time stay-
at-home orders were issued (compared to their values from
the same period in 2019), they seemed to revert back to their
pre-pandemic or 2019 values by May 2020. Interestingly,
some indicators of stress indicated an increase in stress while
others indicated the opposite. If these trends are correct, that
would mean the change in consumers’ behavior due to the

9In hot and humid climates, like those of Florida, HVAC systems are
the major consumers of electricity in commercial buildings. This particular
demand does not depend much on whether the building is occupied or not,
and commercial building HVAC systems keep running during unoccupied
hours. There have been reports in the past of building owners/operators
shutting down HVAC systems in unoccupied buildings to save money, only
to discover mold growth and related issues later on that have offset and
exceeded the potential savings of such measures [5]. Thus, it is likely the
reduced commercial activity in Florida reduced electricity demand, but this
conclusion is not as straight forward and should be supported with further
analysis.
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pandemic mitigation efforts—in so far as it affects the power
grid—was temporary.

Almost all earlier studies reported a reduction in electricity
demand coincident with COVID-19 mitigation efforts. Since
the pandemic is reducing economic activity, a reduction in
energy demand is expected.When it comes to electricity, such
a conclusion is less obvious. According to the EIA, buildings
consume 75% of the electricity in the US [7]. While electric-
ity consumption in commercial buildings (offices, schools,
retail stores, restaurants etc.) may have reduced, it is possible
that such a reduction is offset by an increase in residential
building electricity consumption since people are staying and
working from home. Resolving this question requires that
we estimate the change due to other concomitant factors,
especially weather.

The weather correction exercise for a small balancing
authority in Florida indicated that the pandemic led to an
increase in electricity demand there. Our speculation for the
increase is that the more people staying home is increasing
residential electricity demand, and the reduction in commer-
cial demand is not enough to offset it. Whether it is going to
continue, or whether such a trend is likely in larger regions,
will require further work.

The analysis presented here is a first step. It needs to be
continued and refined as the pandemic—and the mitigation
efforts to contain it—continues to evolve, to understand the
impact on consumer behavior and electricity sector.

The weather correction exercise also indicated that the
inherent prediction error of the model is only marginally
smaller than the changes predicted by the model. This makes
providing quantitative estimates of the weather-corrected
change challenging. Lack of careful evaluation of a model’s
predictive power can be dangerous: a modeler can be swayed
by confirmation bias.
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