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Abstract: Aiming at improving the air quality and protecting public health, policies such as restricting
factories, motor vehicles, and fireworks have been widely implemented. However, fine-grained
spatiotemporal analysis of these policies’ effectiveness is lacking. This paper collected the hourly
meteorological and PM2.5 data for three typical emission scenarios in Hubei, Beijing–Tianjin–Hebei
(BTH), and Yangtze River Delta (YRD). Then, this study simulated the PM2.5 concentration under
the same meteorological conditions and different emission scenarios based on a reliable hourly
spatiotemporal random forest model (R2 exceeded 0.84). Finally, we investigated the fine-grained
spatiotemporal impact of restricting factories, vehicles, and fireworks on PM2.5 concentrations
from the perspective of hours, days, regions, and land uses, excluding meteorological interference.
On average, restricting factories and vehicles reduced the PM2.5 concentration at 02:00, 08:00, 14:00,
and 20:00 by 18.57, 16.22, 25.00, and 19.07 µg/m3, respectively. Spatially, it had the highest and
quickest impact on Hubei, with a 27.05 µg/m3 decrease of PM2.5 concentration and 17 day lag to
begin to show significant decline. This was followed by YRD, which experienced a 23.52 µg/m3

decrease on average and a 23 day lag. BTH was the least susceptible; the PM2.5 concentration
decreased by only 8.2 µg/m3. In addition, influenced by intensive human activities, the cultivated,
urban, and rural lands experienced a larger decrease in PM2.5 concentration. These empirical results
revealed that restricting factories, vehicles, and fireworks is effective in alleviating air pollution
and the effect showed significant spatiotemporal heterogeneity. The policymakers should further
investigate influential factors of hourly PM2.5 concentrations, combining with local geographical and
social environment, and implement more effective and targeted policies to improve local air quality,
especially for BTH and the air quality at morning and night.
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1. Introduction

Air pollution is a great challenge to human health worldwide. The atmospheric particulate matter,
especially particulate matter with a diameter of less than 2.5 µm (PM2.5), can be inhaled into the human
body due to its tiny diameter. Therefore, it may cause respiratory and cardiovascular diseases [1–3].
Besides the physical damage, epidemiological and toxicological studies report that PM2.5 pollution is
associated with depression and anxiety symptoms [4,5] and the oxidative stress and inflammation
induced by PM2.5 may cause brain injury [6,7]. Therefore, it is urgent for governments to implement
a series of policies to control the air pollution level effectively and to protect public health. Among them,
restricting factories, motor vehicles, and fireworks are some of the most common measures in China
and full recognition of their effectiveness is important.
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Many studies have investigated the correlation between factories, motor vehicles, and
fireworks with PM2.5 concentration. Based on their research method, they can be divided into
two categories—namely, the multivariate receptor and models and econometric analysis models [8].
The multivariate receptor models analyze the components of PM2.5 from the perspective of chemistry
and physics to identify its source. For instance, Wang et al. collected meteorological data and
compositional data of PM2.5 in a monitoring station located in Shanghai over a month [9]. The emission
sources of PM2.5 were identified using the positive matrix factorization method, including secondary
nitrate, secondary sulfate, vehicular/industrial emissions, and coal combustion. Yu et al. recorded
the hourly concentrations of 18 elements of PM2.5 at an urban site of Nanjing during 2017 [10].
They found that some specific element’s concentrations would increase when the traffic activities,
fireworks, and sandstorm events occurred. Similar studies were conducted in Beijing, Guangzhou,
and other major cities in China [11–15]. These studies demonstrated that air pollution in China is
one of the highest in the world. The possible sources consist of coal combustion, soil dust, traffic
emissions, secondary inorganic aerosols, and emissions from industrial processes and wood combustion.
Feng et al. and Wang et al. conducted PM2.5 concentration monitoring experiments during the Spring
Festival in Xinxiang and Xiamen, respectively [16,17]. The chemical analysis results indicated that the
burning of fireworks during the festival worsens air quality in a short period. This was also confirmed
in the United States. Seidel et al. collected the systematic observations of 315 monitoring stations
across the United States over multiple years and the results showed that during the Independence Day
holiday, the hourly PM2.5 concentration of one site adjacent to fireworks climbed to ~500 µg/m3 [18].
Although the multivariate receptor methods contribute much to the identification of the correlation
between factories, vehicles, and fireworks with PM2.5, most of these studies were conducted in a local
region with very limited monitoring equipment. Thus, the conclusions drawn from these investigations
do not provide a basis for implementing policies in a large area.

The econometric models use many economical methods to explore the impact of factories and
vehicles on PM2.5 concentration. Xu et al. and Huang et al. collected statistical panel data of China
over 10 years and used the stochastic impacts by regression on population, affluence, and technology
(STIRPAT) model to explore the driving factors of PM2.5 [19,20]. Cheng et al. and Luo et al. improved
the spatial scale to the civic level and obtained many details of the driving forces [8,21]. Aside from the
STIRPAT model, other economic methods were also adopted to explore the driving forces. Ma et al.
analyzed the driving factors of fog and haze in 152 cities in China using the spatial autoregressive
model [22]. Wu et al. collected data from 74 cities with PM2.5 monitoring stations in 2013 and 2014 and
explored the determinants of PM2.5 using the random effect model [23]. These studies demonstrated
that on an economic development level, urbanization level, coal consumption, motor vehicles, and
population size are key influencing factors of PM2.5. Wang et al. used a spatial panel Dubin model
to investigate the relationship between PM2.5 and six socioeconomic factors during 2015~2017 in
Beijing–Tianjin–Hebei (BTH) [24]. It was found that the urbanization rate has a negative effect on
PM2.5, which may be due to the stricter environmental regulations than before. All of these studies
demonstrated the urgency and importance in implementing emission control measures and evaluating
their effectiveness. Although Zhang et al. and Ding et al. have confirmed the impact of the active clean
air policies during 2013–2017 on reducing PM2.5, the spatiotemporal resolution in these studies were
low, meaning the fine-grained spatiotemporal impact was not investigated [25,26]. However, with
different land uses, the PM2.5 pollution level and socioeconomic condition varied; such variation
leads to differences in the impact of human factors with changing land-use trends [27]. Since PM2.5

concentration varies over the course of the whole day, the effect of restricting industries and traffic
may also vary with different hours. In addition, whether the restriction of factories and vehicles
can take effect on improving air quality immediately or whether this requires some time to show
a significant effect is also valuable to investigate. Since most of the economic studies are conducted
based on provincial or civic data, the abovementioned fine-grained spatiotemporal effect has not been
fully explored.
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The variations in meteorological conditions can dominate the monthly PM2.5 variations on
a regional scale [25]. To fully recognize the spatiotemporal impact of the restriction of factories and motor
vehicles on PM2.5, the meteorological interference must be eliminated. Therefore, studies on the modeled
PM2.5 pollution level under the same meteorological conditions but different emission conditions, such
as open or total closure of factories and commuting, are required. First, the scenario of closing factories
and vehicles, which is ordinarily impossible to realize, needs to be created. The opportunity to do this
presented itself in late December 2019, when an outbreak of a novel coronavirus (COVID-19) emerged
in Wuhan, China and rapidly spread across China [28]. Considering its strong infectious ability,
Chinese provinces and regions carried out a level 1 response to major public health emergencies, which
required people to stop attending school and going to work. Moreover, the factories were closed [28–34].
These extreme response measures provided the emission scenario of factories being shut down and
a reduction in travel. The remaining problem is how to retrieve the PM2.5 concentration under the
same meteorological condition but different emission scenarios. The widely used retrieval models
include chemistry transport models (CTM), air pollution dispersion models, and statistical models.
CTM retrieve PM2.5 based on the transport mechanism and physical as well as chemistry reactions
of air pollutants [35,36]. Dispersion models, such as the Gaussian dispersion model and Lagrangian
dispersion model, simulate the surface air quality according to the estimation of the impact of the point,
line, volume, and area emission sources [37,38]. For the purpose of comparing the impact of different
emission scenarios on air pollution, both CTM and dispersion models require the corresponding
meteorological data and concrete emission inventory of different time periods. However, due to the
complex composition of emission sources, rapid technological update, and difficulty in obtaining
relevant information, accurate and up-to-date emission inventory is difficult to collect. The most
widely used emission inventory for China is the Multi-resolution Emission Inventory of China (MEIC,
http://www.meicmodel.org/) and its newest version is 2015. Therefore, it is difficult to obtain the
emission inventory under different time periods, meaning the CTM and dispersion models cannot be
applied for retrieving air pollution under different emission scenarios. Therefore, this paper adopted
the random forest (RF) model, which is a widely used statistical model in PM2.5 retrieval studies with
high accuracy, to simulate the PM2.5 concentration under the same meteorological conditions but
different emission scenarios [39].

The aim of this paper is to investigate the fine-grained spatiotemporal effect of the restrictions of
factories, vehicles, and fireworks on air pollution. Hubei province, which is the worst hit province
by COVID-19, together with the heavily contaminated region, Beijing–Tianjin–Hebei (BTH), and
the Yangtze River Delta (YRD) region were chosen as the study areas. The PM2.5 concentration
and meteorological data for three time periods were collected as follows: the COVID-19 isolation
period (time period 1: 21 January 2020–20 February 2020), the previous month before the isolation
(time period 2: 21 December 2019–20 January 2020), and the same period in the lunar calendar of
last year (time period 3: 1 February 2019–3 March 2020). The three time periods represent three
typical emission scenarios, namely, shutting down factories and vehicles (SD), normal commute (NC),
and normal spring festival (NSF). The severe air pollution is not only a natural phenomenon, but also
a man-made contamination caused by long-term unhealthy economic activities [22,40,41]. Thus, the
influence of weather must be eliminated when studying the impact of emission control measures.
This paper used the meteorological data and PM2.5 concentration data during NSF and NC periods
to develop two separate spatiotemporal random forest (STRF) models to simulate the correlation
between meteorological factors and PM2.5 concentration under the specific emission scenarios of the
corresponding periods. Then, the meteorological data of the SD period was inputted in two STRF
models to obtain the simulated PM2.5 concentration under the weather condition of SD together with
emission scenarios of NSF and NC. By comparing the measured PM2.5 concentrations during SD with
the simulated PM2.5 concentration under NSF and NC emission scenarios, we determined the pollution
difference brought by the change of emission scenarios and the impact of emission control measures,

http://www.meicmodel.org/
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including shutting down factories and vehicles. Significant spatiotemporal heterogeneity of the impact
of factories, vehicles, and fireworks was characterized according to the results.

The main objectives and contributions can be summarized as follows: (a) Develop reliable retrieval
models to simulate the PM2.5 level under the same meteorological conditions and different emission
scenarios. The simulated PM2.5 shared the same meteorological background, thus the comparison of
them can eliminate the meteorological interference and therefore, it is more accurate in evaluating the
effect of different emission conditions on PM2.5 than directly comparing the PM2.5 observed under the
three emission scenes. (b) Compare the difference of the PM2.5 variations that were induced by the
restriction of factories, vehicles, and firework from the perspective of different hours and days. The
temporal resolution is finer than month and year, so the results can fill in the deficiencies of previous
large-scale studies that were conducted based on panel data. (c) Spatially, compare the difference of
the PM2.5 concentration variations in different regions and land uses. The influence of fireworks on
PM2.5 was studied in an extensive spatial range, breaking through the limitations of previous studies,
which relied on several limited stations.

2. Materials and Methods

2.1. Development of Emission Scenarios

Hubei province is in the middle area of China and is one of the most important transportation
junctions of China due to its location. In late December of 2019, COVID-19 broke out in Wuhan, Hubei.
On the night of 20 January 2020, Academician Zhong Nanshan, who is the head of the high-level
expert group appointed by China’s National Health Commission to fight COVID-19, announced
in an interview that the phenomenon of human-to-human transmission of COVID-19 had been
confirmed. This announcement signaled the start of the public’s awareness of the contagious nature
of COVID-19. People began their self-quarantine at home to avoid coming into contact with others.
Considering that the disease can be transmitted by direct contact and droplets, two days after the
announcement, Chinese provinces and regions launched a level 1 response to major public health
emergencies [28–30,32]. Under this policy, people were compulsorily required to stay at home to the
greatest extent. The factories and schools were closed and the traffic flow was reduced greatly [33,34].
Such a situation lasted until 23 February 2020 [31]. This emergency transformed China into a natural
laboratory that can be used to study the impact of the restriction of factories and traffic on the alleviation
of air pollution.

To compare the air pollution level under different emission scenarios, we selected three typical
periods, as follows: the COVID-19 isolation period (time period 1: 21 January 2020–20 February 2020),
the previous month before the isolation (time period 2: 21 December 2019–20 January 2020), and the
same period in the lunar calendar of last year (time period 3: 1 February 2019–3 March 2020). These three
study periods represented three emission scenarios and are described in Table 1.

Table 1. Emission scenarios of the study periods.

No. Time Emission Scenarios Abbreviation Fireworks Heating Factories and Vehicles

1 21 January 2020–
20 February 2020

Shut Down factories
and vehicles SD Yes Normal Shut Down

2 21 December 2019–
20 January 2020 Normal Commute NC None Normal Normal

3 1 February 2019–
3 March 2020 Normal Spring Festival NSF Yes Normal Normal

Time period 1 represents the emission scenario of SD. During this period, owing to subjective
wishes and objective government policies, people tried their best to stay at home, resulting in the near
complete shutdown of traffic and factories. In addition, this period was in winter, thus the winter
heating was functioning as normal. The 2019 Chinese Spring Festival was held on 25 January 2020,
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and during this event, fireworks were present. Time period 2 represented the emission scenario of NC,
in which the factories and vehicles were open and operational as normal. This period was in winter
and the Spring Festival was not held. Thus, the heating was normal and firework displays did not
occur. Time period 3 represents the emission scenario of the NSF. During this period, emission from
fireworks existed. The heating, factories, and vehicles were nearly normal, regardless of the short
holiday of the Spring Festival. By comparing air pollution under SD and NSF emission scenarios, the
effect of shutting down factories and vehicles was determined. By further comparing air pollution
under SD and NC, the effect of fireworks was determined.

2.2. Data

BTH refers to the region comprising Beijing, Tianjin, and Hubei provinces. YRD refers to the region
containing Shanghai, Zhejiang, Jiangsu, and Anhui provinces. BTH and YRD are both strategically
and economically important regions in China, with a large number of citizens. According to China
Statistical Yearbook, BTH and YRD have 112.7 million and 225.36 million people occupying 8.08%
and 16.15% of the national population, respectively [42]. Influenced by the rapid urbanization and
unhealthy ways of economic development, air quality in BTH and YRD has declined in the past years,
leading to serious public exposure to severe air pollution.

In this paper, the study areas were BTH, YRD, and Hubei province. Hubei province is the area
worst hit by COVID-19. We collected PM2.5 data of the study area in three periods listed in Table 1
from the China National Environmental Monitoring Center (http://106.37.208.233:20035/) and Beijing
Municipal Environmental Monitoring Center (http://www.bjmemc.com.cn/). The stations owning
over 20% missing values during the months of the study periods were omitted. In total, 359 out
of 422 stations were retained and the missing data percentage of the remaining stations was 3.49%.
The remaining missing observations were interpolated via linear interpolation based on the PM2.5

observations of the previous and later hours if both of them existed. Otherwise, interpolation was
conducted via the inverse distance squared method according to the observations of other stations.
The accuracy of the interpolation procedure was validated via 10-fold cross validation and the average
mean absolute error was 4.78 µg/m3. Figure 1 shows the study area’s locations and spatial distribution
of mean PM2.5 concentration during SD. From Figure 1, PM2.5 showed a worsening pollution trend
from south to north, except for Northern Hebei.Int. J. Environ. Res. Public Health 2020, 17, 4828 6 of 22 
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The meteorological data of the study area during the study periods were collected from the global
Copernicus Atmospheric Monitoring Services (CAMS) production system of the European Centre for
Medium-Range Weather Forecasts (ECMWF) (http://apps.ecmwf.int/datasets/data/cams-nrealtime/

levtype=sfc/). This system combines the satellite observations and uses the Integrated Forecasting
System (IFS) to model the meteorological fields and the processes of atmosphere composition.
The reliability of the CAMS products and IFS is evaluated through a series of Comprehensive Evaluation
and Quality Assurance reports and some regional analysis [43,44]. The CAMS near-real-time dataset
can provide the meteorological data with a spatial resolution of 0.125◦, which is higher than that
of the meteorological observations from limited monitoring stations. Therefore, we collected the
meteorological data from the CAMS dataset, including the U component of wind, V component
of wind, mean sea level pressure, dew point temperature, and temperature; all of these were key
meteorological factors of PM2.5 [45,46]. ECMWF provided meteorological data at 02:00, 08:00, 14:00,
and 20:00 (Beijing Time, BJT). Thus, only the PM2.5 data observed at these hours were considered.
The meteorological data were resampled to about 5 km spatial resolution and the PM2.5 monitoring
stations were matched with its nearest grid. The average PM2.5 observations were calculated for each
grid, which contains PM2.5 monitoring sites, and they were combined with the meteorological data
of the grids and observation time to form the whole study samples. All data were centralized and
standardized in accordance with the following equation before the matching procedure:

x∗ =
x− x
σ

, (1)

where x and x∗ represent the original and transformed observation of a variable, respectively. x and σ
are the mean and standard deviation of all observations, respectively.

2.3. PM2.5 Modeling and Evaluation Methods

This paper aimed to identify the spatiotemporal effect of restricting factories and vehicles during
SD on the alleviation of air pollution. PM2.5 pollution is not only a natural phenomenon influenced by
meteorological conditions, but is also influenced by severe anthropogenic emissions [8,22,40,41,47,48].
Thus, the relationship between PM2.5 meteorological variables is not constant but is changing over
time [24]. Therefore, we assumed that the developed regression model trained based on the PM2.5 and
meteorological data collected from a specific period represents the relationship between them under
the emission scenario of the specific period. Consequently, inputting the same meteorological dataset
into different regression models that were developed based on different datasets, the results represent
the expected PM2.5 level under the same meteorological conditions and different emission scenarios of
different datasets. Therefore, the comparisons of the expected PM2.5 concentration can eliminate the
meteorological interference and directly illustrate the impact of different emission scenarios on PM2.5.

To achieve this goal, this paper established a PM2.5 modeling framework to compare the PM2.5

concentrations under different emission scenarios. The workflow of PM2.5 modeling is illustrated
in Figure 2. Msd, Mnc, and Mns f represent the meteorological data of SD, NC, and NSF periods,
respectively, and PMsd, PMnc, and PMns f represent the PM2.5 observations of the corresponding period.
The “STRF” model refers to the developed spatiotemporal random forest model in this paper, which
will be explained in detail later.

Step 1. The meteorological data and PM2.5 observations of the NSF period (Mns f and PMns f ) and NC
period (Mnc and PMnc) were inputted into the STRF models, respectively.

Step 2. The STRF models were trained in R software using the “randomForest” function. Then, the
trained model Modelns f and Modelnc were generated with the following equations,

Modelns f : PMns f = fns f
(
Mns f

)
, (2)

Modelnc : PMnc = fnc(Mnc), (3)

http://apps.ecmwf.int/datasets/data/cams-nrealtime/levtype=sfc/
http://apps.ecmwf.int/datasets/data/cams-nrealtime/levtype=sfc/
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where fns f and fnc represent the nonlinear relationship between meteorological data and PM2.5

concentration under the specific emission scenario of NSF and NC, respectively. The training
process of STRF is introduced later.

Step 3. Then, the meteorological data of SD (Msd) was inputted into Modelns f and Modelnc to generate
the predictions of PM2.5 concentration using the following equations.

ˆPMsd|ns f = fns f (Msd), (4)

ˆPMsd|nc = fnc(Msd) (5)

ˆPMsd|ns f and ˆPMsd|nc represent the expected PM2.5 pollution level induced by the weather
condition of SD under the emission condition of NSF and NC, respectively.

Step 4. By comparing PMsd, ˆPMsd|ns f , and ˆPMsd|nc from multiple perspectives, we analyzed how the
restriction of factories and vehicles during SD affected the PM2.5 pollution level both spatially
and temporally. It is noted that PMsd, ˆPMsd|ns f , and ˆPMsd|nc represent the observed or predicted
PM2.5 concentrations induced by the meteorological condition of SD under the emission
scenarios of SD, NSF, and NC, respectively. The meteorological and emission scenarios of
PMsd, ˆPMsd|ns f , and ˆPMsd|nc are listed in Table 2.
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Table 2. Meteorological and emission background of PMsd, ˆPMsd|ns f , and ˆPMsd|nc.

Data Type Meteorological Scenario Emission Scenario

PMsd Observed SD SD
ˆPMsd|ns f Predicted SD NSF
ˆPMsd|nc Predicted SD NC
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The STRF model is a spatiotemporal random forest model developed in this study for simulating
the PM2.5 concentration. Its core idea is to introduce spatiotemporal heterogeneity of PM2.5 into
ordinary RF by introducing spatiotemporal factors. To deal with the diurnal variation of PM2.5,
this paper divided the PM2.5 observations and meteorological data into four groups according to the
observation time, namely, 02:00, 08:00, 14:00, and 20:00 (BJT). Then, for the data of each group, an STRF
model was developed to simulate the correlation between PM2.5 with meteorological and location
variables at the specific hour. The STRF model is written as follows:

PM2.5|hour = f
(
Uwind|hour, Vwind|hour, mslhour, d2m|hour, t2m|hour, lat, lon

)
, (6)

where the subscript of “hour” represents the observations at 02:00, 08:00, 14:00, or 20:00 (BJT) and f is
nonlinear function. The influencing variables of PM2.5 included meteorological variables (U component
of wind (Uwind|hour), V component of wind (Vwind|hour), mean sea level pressure (mslhour), dew point
temperature (d2m|hour) and temperature (t2m|hour), and location variables (the latitude and longitude
of the center of the study grid)). The spatial heterogeneity of PM2.5 was considered in the model.
The training process of the STRF model is described as follows.

Step 1. The sample size of the training dataset was assumed to be n. Then, the algorithm first drew
n bootstrap samples from the whole training dataset.

Step 2. These samples were used to grow an unpruned regression tree. At each node, the best split
factor was chosen from M randomly selected candidate factors to make the uncertainty of the
split subsets reach the least.

Step 3. The abovementioned steps were repeated ntree times to grow ntree trees. Predictions were
made by averaging the predictions of ntree trees. Considering that PM2.5 concentration must
be positive values, the final prediction of PM2.5 concentration was determined as the maximum
value between the original prediction and 0.

Both Modelns f and Modelnc were trained based on the above process and ˆPMsd|ns f as well as ˆPMsd|nc
were generated through inputting Msd to Modelns f and Modelnc, respectively.

Three evaluation criteria were used to verify the accuracy of the STRF model in retrieving the PM2.5

concentration, including the root mean square error (RMSE), mean absolute error (MAE), and R square
(R2). RMSE and MAE represent the prediction error of the retrieval model. The less RMSE and MAE
are, the higher the accuracy of the retrieval model. R2 describes the fitting degree of the STRF model to
the PM2.5 observations, and a high value indicates increased model reliability. The formulas of these
criteria are defined as follows:

RMSE =

√
1
n

∑n

i=1

(
yi − y∗i

)2
, (7)

MAE =
1
n

∑n

i=1

∣∣∣yi − y∗i
∣∣∣, (8)

R2 = (
Cov(Y, Y∗)√

Var(Y)
√

Var(Y∗)
)

2

× 100%, (9)

where n is the sample size; yi and y∗i are the observed and predicted PM2.5 concentration, respectively.
Cov(·) represents the covariance, Var(·) is the variance, and Y as well as Y∗ represent the observed
sequence and predicted sequence of PM2.5 concentration.

3. Results

The experimental data in this study included the PM2.5 concentration, meteorological data,
and location data of stations of BTH, YRD, and Hubei province in the following three time
periods: 21 January 2020–20 February 2020 (SD), 21 December 2019–20 January 2020 (NC), and
1 February 2019–3 March 2019 (NSF). The emission situations of the three periods are introduced in
Table 1. Limited by ECMWF data, only PM2.5 observations at 02:00, 08:00, 14:00, and 20:00 (BJT) were
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considered. For each hour in the NC and NSF period, a particular STRF model was developed to
simulate the correlation between meteorological data and PM2.5 for this hour and period. In total,
there were eight STRF models developed. The number of trees and randomly selected features in
STRF were set as 200 and 2, respectively. According to the emission condition description in Table 1
and the data description in Table 2, the comparison between PMsd and ˆPMsd|ns f indicated the effect of
shutting down factories and vehicles on the alleviation of air pollution; by further comparing PMsd
with ˆPMsd|nc, the effects of fireworks in the Spring Festival were inferred.

Section 3.1. introduces the reliability of the STRF model in retrieving the PM2.5 concentration,
which assured the feasibility of using the predicted results of STRF models to serve as the simulated
PM2.5 under specific meteorological and emission conditions. Sections 3.2 and 3.3 analyze the temporal
and spatial impact of fireworks, factories, and vehicles on air pollution in BTH, YRD, and Hubei
province, respectively. Furthermore, considering that land-use categories affect the emission level,
the correlation between different land-use categories with air pollution was investigated.

3.1. Reliability of the STRF Model

This subsection introduces the prediction accuracy of eight STRF models. Table 3 shows the
average RMSE, MAE, and R2 results of the 10-fold cross validation of STRF models built for 02:00, 08:00,
14:00, and 20:00 (BJT) under NC and NSF. In addition, the “Obs.” column in Table 3 also shows the
average PM2.5 concentration of different regions and hours during the NSF and NC period. From the
view of variations within a day, the PM2.5 concentrations at 08:00 and 14:00 were lower than that at
02:00 and 20:00, which indicates that the air quality in the daytime was better than at night. The STRF
models at 14:00 were the most accurate among the four hour models, with the highest R2 of the whole
study area reaching 0.88 and 0.89 for NSF and NC, respectively. The performance of the models at
three other hours were similar, with the RMSE of the whole study area being around 20 and 19 µg/m3

and MAE being around 13 and 12 µg/m3 for NSF and NC, respectively. From the perspective of
regions, air pollution was the most severe in BTH, followed by Hubei, and the air quality in YRD was
the best. At the same time, the RMSE and MAE were larger in BTH than YRD and Hubei, which is
due to the fact that more severe air pollution usually implies more complex emission sources and
naturally, the PM2.5 concentration was more difficult to make accurate predictions. Notably, for all
models under different times and scenarios, the R2 of the whole study area exceeded 0.84, indicating
that the developed STRF models could explain over 84% of the PM2.5 concentration variation. The high
prediction accuracy of STRF models constructed a solid foundation for using the retrieval results of
STRF models to serve as the simulated air pollution level under the meteorological conditions of SD
and emission conditions of NC or NSF.

Table 3. The average prediction accuracy of 10-fold cross validation experiments of STRF models in
different regions.

Hour (BJT) Region
Normal Spring Festival Period Normal Commute Period

Obs. RMSE MAE R2 Obs. RMSE MAE R2

02:00

BTH 96.04 35.06 20.15 0.83 78.88 25.69 16.72 0.85
YRD 59.69 16.15 10.54 0.87 57.73 15.54 10.42 0.88

Hubei 70.78 19.48 12.39 0.79 65.18 15.61 11.40 0.82
All 71.47 23.88 13.49 0.84 64.73 19.01 12.32 0.87

08:00

BTH 84.22 27.27 17.13 0.85 71.82 25.56 16.22 0.84
YRD 59.02 18.69 11.22 0.82 57.51 15.47 10.58 0.87

Hubei 70.40 20.37 13.05 0.80 59.82 15.34 11.44 0.79
All 67.71 21.73 13.15 0.84 61.86 18.88 12.28 0.85
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Table 3. Cont.

Hour (BJT) Region
Normal Spring Festival Period Normal Commute Period

Obs. RMSE MAE R2 Obs. RMSE MAE R2

14:00

BTH 70.22 21.49 13.25 0.89 66.69 20.89 13.36 0.89
YRD 57.12 14.25 9.44 0.88 55.59 13.25 9.24 0.89

Hubei 67.48 16.22 11.41 0.82 61.49 14.15 10.43 0.83
All 62.27 16.93 10.81 0.88 59.54 15.92 10.56 0.89

20:00

BTH 85.96 25.53 15.47 0.86 79.87 24.06 16.13 0.85
YRD 60.96 17.30 11.57 0.84 59.92 15.16 10.45 0.87

Hubei 67.01 16.79 11.83 0.80 68.25 14.66 10.99 0.84
All 68.84 19.96 12.70 0.85 66.71 18.10 12.13 0.86

BTH: Beijing–Tianjin–Hebei; YRD: Yangtze River Delta; RMSE: root mean square error; MAE: mean absolute error;
STRF: spatiotemporal random forest.

3.2. Temporal Analysis of the Effect of Fireworks, Factories, and Vehicles

Table 4 shows the average difference of PM2.5 concentration under the emission scenarios of SD,
NC, and NSF. The italicized numbers implied that the gap exceeds the MAE range of the corresponding
STRF model for NSF or NC periods. As described in Table 2, PMsd, ˆPMsd|ns f , and ˆPMsd|nc were observed
or predicted under the meteorological conditions of SD and different emission scenarios, such as SD,
NSF, and NC. The negative values in Table 4 indicate that compared with NSF or NC, the emission
control measures during the SD period declined PM2.5 concentration to a certain degree. According to
the emission scenarios described in Table 1, the main difference in the emission during SD and NSF
was whether the factories and vehicles were shut down due to COVID-19. The main difference in the
emission during SD and NC was the presence or absence of fireworks and whether the factories and
vehicles were shut down.

Table 4. Average difference of the PM2.5 concentration under different emission scenarios.

Area
PMsd − ˆPMsd|nsf PMsd − ˆPMsd|nc

02:00 08:00 14:00 20:00 All 02:00 08:00 14:00 20:00 All

BTH −11.11 −11.54 −4.67 −5.47 −8.20 4.01 4.09 1.61 1.25 2.74
YRD −20.93 −16.75 −32.12 −24.26 −23.52 −17.32 −13.21 −19.12 −20.30 −17.49

Hubei −23.75 −23.33 −36.28 −24.83 −27.05 −11.98 −9.31 −18.08 −23.00 −15.59
All −18.57 −16.22 −25.00 −19.07 −10.57 −7.80 −13.15 −14.63

The results of PMsd − ˆPMsd|ns f indicated the effect of restricting factories and vehicles during
SD on the decline of the PM2.5 concentration. The difference of PMsd − ˆPMsd|ns f and PMsd − ˆPMsd|nc
implied the effect of fireworks at the Spring Festival. Some useful conclusions can be drawn from
Table 4. (a) For 02:00, 08:00, 14:00, and 20:00, restricting factories and vehicles during SD caused PM2.5

to decrease by 18.57, 16.22, 25.00, and 19.07 µg/m3, respectively, on average. The effect was the least
for BTH and the largest for YRD and Hubei at 14:00. Especially for Hubei province, the restriction
of factories and vehicles during SD induced the PM2.5 concentration at 14:00 to show a decrease
of 36.28 µg/m3. (b) From the perspective of regions, restricting factories and vehicles decreased
the PM2.5 concentration by 8.20, 23.52, and 27.05 µg/m3 for BTH, YRD, and Hubei, respectively, on
average. The smallest

∣∣∣PMsd − ˆPMsd|ns f
∣∣∣ were found in BTH and all values were within the MAE

range. This finding illustrated that in BTH, the closure of factories and vehicles during SD did not
significantly affect the improvement of air quality. On the contrary, all of the values of PMsd − ˆPMsd|ns f ,
in YRD and Hubei, they exceeded the MAE range according to the STRF model, indicating that the
effect of shutting down factories and vehicles during SD was significant. (c) By comparing mean
PMsd − ˆPMsd|nc with PMsd − ˆPMsd|ns f , it was found that the set off of fireworks increased PM2.5 by 10.94,
6.03, and 11.46 µg/m3 for BTH, YRD, and Hubei, respectively, on average.
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Figure 3 exhibits the temporal trend of the observed or predicted PM2.5 concentration in the
SD period under different emission scenarios. The black lines represent the observed PM2.5 values
(PMsd) and the red and blue lines represent the predicted PM2.5 values under NC and NSF (denoted
by ˆPMsd|nc and ˆPMsd|ns f ), respectively. (a) The temporal trend of observed PM2.5 concentration varied
in different regions. For the BTH region, two peaks occurred around 26 January and 12 February,
reaching almost 200 µg/m3. In contrast, the observed PM2.5 concentrations PMsd gradually decreased
until less than 50 µg/m3 for YRD and Hubei, without any large peaks. (b) The difference between
PMsd with ˆPMsd|nc and ˆPMsd|ns f differs in three regions. For BTH, in the days around two peaks,
PMsd exceeded ˆPMsd|nc and ˆPMsd|ns f ; the two accidental peaks were the main reason for the smaller
mean PMsd − ˆPMsd|nc and PMsd − ˆPMsd|ns f results for BTH in Table 4. For YRD and Hubei, ˆPMsd|nc and

ˆPMsd|ns f in YRD and BTH fluctuated at around 70 µg/m3 on the whole, indicating that under the
meteorological condition of the SD period, PM2.5 concentrations were expected to be around 70 µg/m3

under the emission scenarios of NC and NSF. Combined with the decreasing trend of observed PM2.5,
it could be concluded that restricting factories and vehicles during SD gradually affected the air
pollution level and reduced PM2.5 concentration. The turning point was the time when PMsd started
to show significantly lower values compared with ˆPMsd|nc and ˆPMsd|ns f . This was the time when the
closure of factories and vehicles started to essentially decrease the air pollution level. The turning
points for YRD and Hubei were different. For the YRD region, from 13 February, most PMsd were lower
than ˆPMsd|nc and ˆPMsd|ns f . For the Hubei region, the turning point was on 7 February. This illustrated
that there was a delay in shutting down factories and vehicles to have significant effects on alleviating
air pollution and the delay time was 23 and 17 days for YRD and Hubei, respectively.
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(NC), and spring festival (NSF), respectively. (a–l) represent the results of BTH, YRD, and Hubei at
02:00, 08:00, 14:00, and 20:00 (BJT), respectively.

3.3. Spatial Analysis of the Effect of Fireworks, Factories, and Vehicles

Figure 4a–c shows the spatial distribution of the mean difference and mean relative difference
between PMsd, ˆPMsd|nc, and ˆPMsd|ns f . The bluer the sites are, the smaller the difference is and the
larger the effect of shutting down factories and vehicles during SD on declining PM2.5 concentration.
Figure 4d shows the land use data in the three regions in 2018, which were collected from the
Chinese Resource and Environment Data Cloud Platform (www.resdc.cn/data.aspx?DATAID=264).
Through the comparison of Figures 1 and 4, we further explored the spatial effect of fireworks, factories,
and vehicles on air pollution.
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Figure 4. Spatial distribution of (a) the mean difference of PM2.5 under SD and NSF (PMsd − ˆPMsd|ns f );
(b) the mean relative difference of PM2.5 under SD and NSF ((PMsd − ˆPMsd|ns f )/ ˆPMsd|ns f × 100); (c) the
mean difference of PM2.5 under SD and NC (PMsd − ˆPMsd|nc); and (d) land uses of Beijing–Tianjin–Hebei
(BTH), Yangtze River Delta (YRD), and Hubei. The bluer the sites are, the smaller the difference is.

From the DEM situation shown in Figure 4a and the land uses distribution in Figure 4d, it can be
found that South BTH, North YRD, and middle Hubei are low topographically and mainly occupied
with cultivated, urban, and rural land and other constructions. Comparatively, other areas of BTH,
YRD, and Hubei are high topographically, occupied with grass and forest. Figure 4a shows the
spatial distribution of PMsd − ˆPMsd|ns f , which implies the decline degree of the PM2.5 concentration
induced by the closure of the factories and vehicles compared with the NSF period. The results show
that PMsd − P̂Msd|ns f were generally negative excluding North BTH and tended to be smaller in the



Int. J. Environ. Res. Public Health 2020, 17, 4828 13 of 22

cultivated, urban, and rural land. This illustrates that the closure of factories and vehicles generally
improved the air quality in south BTH, YRD, and Hubei and the absolute improvement was higher in
the areas where human activities were more intense.

Considering that the air pollution was spatially varying, which is indicated by the spatial
distribution of mean PM2.5 concentration in Figure 1, we also plotted Figure 4b to represent the spatial
distribution of the relative effect of the closure of factories and vehicles, which was calculated by
(PMsd − ˆPMsd|ns f )/ ˆPMsd|ns f × 100. It could be concluded that in South BTH, middle Hubei, and North
Central YRD, the relative difference was much smaller, indicating that the relative improvement was
also higher in these areas.

Figure 4c shows the spatial distribution of PMsd − ˆPMsd|nc, which implies the difference of PM2.5

concentration caused by the difference of the emission scenario during the SD and NC period.
Comparing Figure 4a with Figure 4c, we can find that the color of the sites is generally redder in
Figure 4c than Figure 4a, especially in South BTH and North YRD. This indicates that in BTH, YRD,
and Hubei, PMsd − ˆPMsd|nc was larger than PMsd − ˆPMsd|ns f , thus ˆPMsd|nc was smaller than ˆPMsd|ns f ,
and the difference was more significant in the cultivated, urban, and rural land. This was due to the
fact that during NSF, there were many fireworks set off, which may cause much more air pollutants
and further aggravate air pollution.

4. Discussion

In the context of the isolation of most Chinese cities caused by COVID-19, this paper adopted
STRF models to simulate the PM2.5 concentration levels of BTH, YRD, and Hubei under the
same meteorological conditions but different emission scenarios. This paper further studied
the spatiotemporal effect of restricting factories and vehicles during SD and fireworks on air
pollution. Three periods were chosen as the study period, namely, the COVID-19 isolation
period (21 January 2020–20 February 2020), the previous month before the isolation period
(21 December 2019–20 December 2020), and the same period in the lunar calendar of last year
(1 February 2019–3 March 2019), to represent the emission scenarios of SD, NC, and NSF, respectively.
Based on the meteorological data and PM2.5 observations of the NC and NSF periods, hourly STRF
models (Modelnc and Modelnsf) were developed to simulate the correlation between PM2.5 and
meteorological variables under the specific emission scenarios of NC and NSF. Then, the meteorological
data of the SD period was inputted into Modelnc and Modelnsf, respectively. We obtained the simulated
PM2.5 concentration level under the meteorological condition of SD and emission scenarios of NC
( ˆPMsd|nc) and NSF ( ˆPMsd|ns f ). The results presented in Table 3 prove the reliability of the developed
STRF models. By comparing PMsd (PM2.5 concentration observations under the meteorological and
emission condition of the SD period) with ˆPMsd|nc and ˆPMsd|ns f , we explored the spatiotemporal effect
of shutting down factories and vehicles and fireworks on the PM2.5 pollution level, providing new and
detailed support for the implementation of emission control policies.

According to the results, the effect of shutting down factories and vehicles has obvious
spatiotemporal patterns. (a) From the perspective of the temporal analysis, Table 4 shows that
compared with the NSF period, the emission control measures during the SD period reduced the
concentrations of PM2.5 by 18.57, 16.22, 25.00, and 19.07 µg/m3 at 02:00, 08:00, 14:00, and 20:00,
respectively. The impact was largest at 14:00 and 20:00, followed by 02:00 and 08:00. The decrease
in 08:00 was mainly due to the reduction of traffic flow during morning rush-hour, which has been
confirmed to be an important contributor of the pollution at this time [10]. However, the restriction
of factories and vehicles caused a larger decrease of PM2.5 concentration at 14:00 and 20:00. This is
owed much to the great reduction of human activities during the daytime. Zhou et al. found that
human activities are complicated, including all kinds of industry, shopping, restaurant, entertainment,
etc. These have led to industrial agglomeration and further generated various exhaust emissions
and even cumulative emission, resulting in a greater impact on the concentration of pollution in the
afternoon and at night [49]. Thus, during the SD period when human daytime outside activities were
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reduced, the PM2.5 concentration of 14:00 and 20:00 declined significantly, especially for 14:00 when
normally there are many human activities. Wang et al. also found that the factor of vehicular/industrial
emissions contributed more in nighttime than in daytime and there was a peak in morning rush-hour.
These are consistent with the results of this study. However, their results showed that the contribution
of vehicular/industrial emissions was the least at around 14:00, which is contrary to the conclusion of
this paper. This may be due to the fact that the data used in the study of Wang et al. were collected from
the single urban monitoring station surrounded by commercial properties and residential dwellings,
while this study considered more stations under various backgrounds, such as industrial and rural
environments. Nevertheless, the obvious diurnal variation trend observed both in this paper and the
study of Wang et al. illustrates that the influential factors of air pollution change with hours and the
impact degree of each socioeconomic factor on air pollution is also varying. Thus, hourly analysis of the
major components and sources are necessary to further alleviate air pollution. (b) From the perspective
of spatial analysis, previous studies have shown that elevation and land use are vital influencing
factors of PM2.5 [50,51]. In this paper, Table 4 and Figure 4 show a high correlation between the terrain
characteristics, land uses, PM2.5 pollution levels, and the spatial effects of shutting down factories
and vehicles. In general, the low-lying areas (including Southeast BTH, Northern YRD, and Middle
Hubei) are occupied with cultivated, urban, and rural land. In these areas, the air pollution was more
severe and PMsd − ˆPMsd|ns f as well as ((PMsd − ˆPMsd|ns f )/ ˆPMsd|ns f × 100) were smaller. The severe air
pollution in these areas was highly correlated with rapid economic development. Therefore, restricting
factories and vehicles during SD effectively reduced the emission of air pollutants and thus had a great
effect on the alleviation of air pollution. In contrast, the high-lying areas (including Northwest BTH,
Southern YRD, and the west and east sides of Hubei) have grasslands and forest, inducing better air
quality and larger PMsd − ˆPMsd|ns f and ((PMsd − ˆPMsd|ns f )/ ˆPMsd|ns f × 100), indicating that shutting
down factories and vehicles during SD did not greatly affect these areas. This is consistent with the
conclusions in the studies of Wang et al. and Lin et al., which illustrated that the increasing population
and rapid urban expansion had an adverse impact on air quality [50,51].

The spatial and temporal effects of shutting down factories and vehicles are complex and
interweaving. First, the PMsd − ˆPMsd|ns f results in Table 4 show that the restriction of factories and
vehicles during SD led to a decline of PM2.5 concentration by 8.20, 23.52, and 27.05 µg/m3 for BTH,
YRD, and Hubei, respectively. All hourly results of PMsd − ˆPMsd|ns f in YRD and Hubei exceeded the
MAE range, indicating that shutting down factories and vehicles during SD led to a significant decline
in PM2.5 concentration. The results indicate that the restriction of factories and vehicles during SD
was generally effective in declining the PM2.5 in BTH, YRD, and Hubei. However, the effect showed
significant spatial heterogeneity across different regions. The PM2.5 concentrations of Hubei declined
more than that of YRD. This is in agreement with the trend illustrated in the study of Xu et al. that the
impacts of private cars on PM2.5 emissions decrease continuously from east to west [41]. However, the
air pollution in BTH was more severe and PMsd − ˆPMsd|ns f was the largest. This may be explained
by other important emission sources and unfavorable weather conditions. (1) Coal combustion is an
important emission source of PM2.5 in BTH. Andersson et al. and Zhou et al. have proved that the
contribution of vehicle emissions was lower in BTH than southern cities; in contrast, coal combustion
occupied a higher proportion of PM2.5 in BTH [52,53]. This is not surprising as coal combustion is
commonly used for residential heating in BTH during winter, while there is no central heating for
southern cities such as YRD and Hubei. Zhang et al. also proved that the residential sector is a notable
contributor to PM2.5 in northern China during heating season [25]. The residuals of coal combustion
contribute a lot to the formation of PM2.5 of BTH, meaning the effect of shutting down factories and
vehicles was smaller in BTH than YRD and Hubei. (2) The synoptic patterns and meteorological
elements are also vital inducements of the formation of severe haze in BTH. Compared with Hubei
and YRD, with relatively flat terrain, BTH is high in the northwest and low in the southeast, inducing
evident mountain-valley breeze circulation. Bei et al. have studied the impact of local circulation on air
pollution [54–56]. During the daytime, the valley breeze (southerly or easterly wind) increases and the
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pollutants are transported from urban to mountain areas. At night, Beijing is affected by westerly wind
down from Taihang Mountains and northerly wind down from Yanshan Mountains (mountain breeze),
and pollutants are delivered back to urban areas. The mountain–valley breeze circulation facilitates
the accumulation of pollutants, meaning the pollution level of BTH is affected by the total pollutant
emissions that have accumulated over a long period of time, so shutting down factories and vehicles
did not bring a significant decrease for the PM2.5 of BTH.

Second, according to the studies of Zhang et al. and Ding et al., which compared the air pollution
between 2013 and 2017 in a coarse temporal resolution, the emission control policies significantly
contributed to the declining of PM2.5 concentrations and PM2.5-mortality during this period [25,26].
This paper proved the effect of the emission control measures and further supplemented more detailed
analysis of the daily variations of the effect. We found that there was a delay for the restriction of
factories and vehicles in declining PM2.5 concentrations. Figure 3 shows that the delay in shutting
down factories and vehicles had a significant effect on the improvement of air quality during SD,
and the delay time varied among different regions. For YRD, it took 23 days to observe the measured
PM2.5 concentration (PMsd) as significantly less than ˆPMsd|ns f and ˆPMsd|nc; for Hubei, it took 17 days.
Many studies have confirmed that a large part of PM2.5 is formed by the anthropogenic emissions, and
the meteorological condition, especially wind, plays an important role in the transport and dispersion
of the air pollutant [57]. Considering that the discharge of pollutants greatly exceeds the environmental
capacity, the daily pollutants cannot be purified in time. Therefore, PM2.5 concentration is not only
affected by the air pollutant emission amount of the current day (denoted as E(t)), but is also correlated
with the cumulative emission amount during a previous period (denoted as

∑d
i=0 E(t− i)). After

closing the factories and vehicles, the daily emissions E(t) were reduced a lot, however influenced by
the air pollutants discharged in the preceding period and emissions from other sources, the cumulative
emissions

∑d
i=0 E(t− i) were not reduced much in ratio. Thus, PM2.5 concentration did not show an

immediate great decrease. Obviously, the decline ratio of
∑d

i=0 E(t− i) is negatively correlated with d
and as the number of days that factories and vehicles are closed increases,

∑d
i=0 E(t− i) decreases much

more and the impact of closing factories and vehicles gradually increases. Hence, the phenomenon
that there was a delay time in PM2.5 to show a great decrease is shown in Figure 3.

The reason why the delay time is different in Hubei and YRD can be analyzed from three
aspects. (1) The pollution situation is complex and different for Hubei and YRD. For one month before
the outbreak of COVID-19, that is, the NC period, the average PM2.5 concentration of Hubei was
75.83 µg/m3, which was higher than that of YRD (60.57 µg/m3). This implies that the emission of
pollutants in Hubei may be higher than that in YRD. According to the relative decline proportion
shown in Figure 4b, the average decline proportion of PM2.5 concentration in Hubei and the YRD
region was 31.88% and 25.31%, respectively. This implies that the air pollution in Hubei was more
serious than that in YRD and the contribution of vehicle and factory emissions to local pollution
was higher. Therefore, the influence of the closure of factories and vehicles during SD was higher in
Hubei and the delay time was shorter. (2) From the view of the topographic and climatic conditions,
the natural conditions are different for Hubei and YRD region. A previous study has shown that wind
is a key influencing factor of PM2.5 as low wind speeds suppressed the removal of PM2.5 and high
frequency of wind of a proper direction can lead to low PM2.5 concentration [25]. Figure 5 shows the
distribution of wind speed and wind direction of Hubei and YRD during the SD period. The dominant
wind direction in Hubei was the north wind, while the dominant wind direction in YRD was the
northeast and northwest wind. It is worth noting that Hubei province is larger in the east–west span
than the north–south span and there is no significant change of DEM in the north–south direction.
However, the YRD region is longer in the north–south direction than the east–west direction and DEM
shows a higher tendency from north to south. Under the dominant northwest and northeast wind, such
terrain conditions of YRD mean that the timely spread outside of the air pollutant is difficult. Therefore,
the PM2.5 concentration of YRD is influenced by the cumulative emissions for a longer time (i.e., d is
longer for YRD), hence

∑d
i=0 E(t− i) decreased more slowly. This is one of the reasons why the delay
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time of the YRD region was longer than that in the Hubei region. (3) The restriction degree of factories
and vehicles was different. Hubei is the worst hit region by COVID-19 and the number and proportion
of infectious cases in Hubei province, especially in Wuhan city, are significantly higher than those in
other regions. According to the reports from provincial and municipal health commissions, by the
end of 19:00, 7 February 2020, the cumulative number of infections in Hubei was 22,112, while the
highest in the rest of the country was in Guangdong, with 1034 cases having been reported. The severe
epidemic situation induced the Hubei government to adopt the strictest policies to restrict people
going out and factories opening. Under this background, the public’s sense of spontaneous home
isolation is even stronger. All of these objective measures and subjective consciousness made human
activities in Hubei decline to the greatest extent and the emission of air pollutants declined much more.
Thus, the time it took for shutting down factories and vehicles to significantly affect the amount of air
pollutants was shorter.
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The fireworks aggravated air pollution and the impact showed spatiotemporal heterogeneity.
By collecting the PM2.5 concentration samples from specific sites before and after the Spring Festival
and analyzing their chemical characteristics, Wang et al. and Feng et al. found that during the
Spring Festival, the concentrations of K+, Mg2+, and Al resulting from firework displays increased
significantly [16,17]. However, limited by the spatial range of few monitoring stations, these studies
could not analyze the spatial heterogeneity of the effect of fireworks. This paper analyzed the effect of
fireworks on a larger spatial scale. According to the comparison of PMsd − ˆPMsd|nc and PMsd − ˆPMsd|ns f
in Table 4, the fireworks improved the PM2.5 concentration by 10.94, 6.03, and 11.46 µg/m3 on average
for BTH, YRD, and Hubei, respectively. The spatial distribution of PMsd − ˆPMsd|nc and PMsd − ˆPMsd|ns f
in Figure 4c shows that the impact of fireworks was more significant in the cultivated, urban, and rural
land. We can infer that the strict implementation of a policy prohibiting fireworks is still necessary as it
reduces the PM2.5 concentration in the cultivated, urban, and rural areas.

China is currently undergoing a strategic transition from economic development to environmental
development and a series of policies and measures for air pollutant emission control have been
implemented [58–60]. For example, the government has invested heavily in the production of
alternative energy, including solar, wind, hydro, and nuclear production [40]. Moreover, to reduce the
emission of vehicles, the government launched strict national standards for the discharge of pollutants
and implemented traffic control measures during rush hours for working days [61,62]. In terms of
industrial areas, factories with heavy emissions were shut down and were required to renovate their
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emission methods [63]. These policies highlight the determination of the Chinese government to
improve air quality. Some studies have confirmed the effectiveness of these air pollutant control
measures [25,26,35,36,64] and this paper further explored the spatiotemporal effect of shutting down
factories and vehicles during SD and the effect of fireworks on air pollution using spatial and temporal
scales. The analysis results provided evidence that shutting down factories and vehicles and reducing
fireworks can effectively alleviate air pollution, especially in the cultivation, urban, and rural lands.
The results of studies on spatiotemporal heterogeneity can offer more guidance for the government to
implement policies in different cities.

5. Conclusions

The isolation of most Chinese cities caused by COVID-19 provided the condition of studying the
spatiotemporal effect of shutting down factories and vehicles as well as fireworks on air pollution. Based
on the PM2.5 concentration and meteorological data during NC (21 December 2019–20 January 2020)
and NSF (1 February 2019–3 March 2019) of BTH, YRD, and Hubei, a series of hourly STRF
models were developed to simulate the correlation between PM2.5 with meteorological condition
under a specific emission scenario and specific hour. Then, the meteorological data during SD
(21 January 2020–20 February 2020) were inputted into the STRF models to predict the expected PM2.5

pollution level under NC and NSF. The reliability of the STRF models was verified through 10-fold
cross validation experiments. By comparing the observed PM2.5 concentration during SD with the
predicted PM2.5 concentration under emission scenarios of NC and NSF, this paper explored the impact
of shutting down factories and vehicles during SD and fireworks on PM2.5 concentration from multiple
spatial and temporal perspectives. The main conclusions are as follows:

(1) The impacts of restricting factories and vehicles on declining PM2.5 concentration shows obvious
diurnal variations. Due to the reduction of traffic flow and human activities during the daytime,
the cumulative emissions were reduced significantly. Consequently, the PM2.5 concentration at
14:00 was reduced the most (25.00 µg/m3), followed by 20:00 and 02:00 during the nighttime
(19.07 and 18.57 µg/m3, respectively), and the air pollution at 08:00 during the morning rush-hour
was also alleviated to some extent (16.22 µg/m3).

(2) The air quality is not only affected by the emissions of current day, but is also influenced by the
cumulative emissions discharged in the previous period. Therefore, there was a delay in the time
it took for the restriction of factories and vehicles to have a significant effect on improving air
quality and the delay time for Hubei and YRD were 17 and 23 days, respectively.

(3) The effect of restricting factories and vehicles shows obvious regional differences. Due to the
discrepancies in the composition of PM2.5, the contribution ratio of industrial and vehicular
emissions, and the geographic conditions, BTH, YRD, and Hubei experienced a 8.20, 23.52,
and 27.05 µg/m3 decrease of PM2.5 concentration, respectively. On average, the air quality of
Hubei was improved the most significantly and the fastest, followed by YRD. The air quality of
BTH was improved the slightest because of the emissions from coal combustion and unfavorable
meteorological conditions for air pollutants to be spread.

(4) On account of the impact of more intensive human activities, cultivated, urban, and rural land are
more sensitive to the emissions from factories, vehicles, and fireworks. The air quality in these
areas was improved much more significantly than the forest and grass land after restricting the
above emission sources.

These fine-grained spatiotemporal results have important research and policy implications.
First, more attention should be paid to the hourly heterogeneity analysis of the effect of various
emission control measures. The restriction of factories and vehicles had the most significant effect on
improving air quality at 14:00 compared with three other hours. Similarly, the effect of the restriction
of other emission sources, such as cooking and coal combustion, may also have hourly heterogeneity.
In order to implement more targeted and effective policies aiming at reducing public exposure,
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especially during the human activity rush-hour, more hourly analysis is needed to further investigate
the influential factors of air pollution and the hourly heterogeneity.

Second, the government should combine long-term and short-term policies together in practice
and consider more about the daily variations of the effect of various emission-reduction measures.
The strict restriction of factories and vehicles did not alleviate the air pollution immediately; instead,
the air quality did not show significant improvement until several days later. Therefore, when there is
a heavy haze, the government cannot expect the temporary restriction of industries and cars to make
a great difference on the air quality in a short time. In contrast, the restriction of factories and vehicles
must be insisted on for a long time to obtain a significant effect of improving air quality, including
developing technologies of cleaning up exhaust gas from vehicles and factories and promoting the
emission standards. Moreover, when there are adverse meteorological conditions, such as steady wind
and temperature inversion, and heavy air pollution is induced, some short-acting measures need to be
combined, such as using artificial precipitation to accelerate the sedimentation of pollutant. In order to
better combine the long-term and short-term policies, more investigation of the variation tendency of
the effect of various measures are needed.

Finally, the policies aiming at reducing PM2.5 emissions should be different in the three regions.
The restriction of factories and vehicles had different impacts on air pollution across three regions, so the
discrepancies should be considered in implementing relevant policies. For Hubei and YRD, there is
need to control the excessive increase of ownerships of private vehicles, promote public transport,
and support the usage of new energy for cars while alternative clean energy and technologies of coal
combustion need to be greatly improved in BTH.

The more fine-grained analysis results of this paper could provide more evidence that shutting
down factories and vehicles as well as the control of fireworks play important roles in the improvement
of air quality. The conclusions are valuable for exploring the spatiotemporal patterns of their effect
on air pollution and public exposure, especially for investigating the hourly heterogeneity of the
impact and the delay time of bringing significant change regarding air pollution. Along with the
spatiotemporal patterns of human activities, the conclusions provide help in the implementation
of emission control policies and measures to protect public health. However, this paper had some
limitations. First, studies on the retrieval methods of air pollutants concentration are many [46,65,66]
and thus, more accurate PM2.5 concentration retrieval models can be investigated further to improve
the simulation accuracy, such as the widely used neural networks. Second, due to the difficulties and
privacy issues in collecting relevant information, it is hard to obtain concrete and accurate emission
inventories during a specific period. Therefore, the conclusion can provide more support on how
factories and vehicles affect air pollution if the concrete inventory of factories and vehicles was collected.
This is also the future research direction of our future studies.
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