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Susceptible supply limits the role of climate
in the early SARS-CoV-2 pandemic
Rachel E. Baker1,2*, Wenchang Yang3, Gabriel A. Vecchi1,3,
C. Jessica E. Metcalf2,4, Bryan T. Grenfell2,4,5

Preliminary evidence suggests that climate may modulate the transmission of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). Yet it remains unclear whether seasonal and
geographic variations in climate can substantially alter the pandemic trajectory, given that high
susceptibility is a core driver. Here, we use a climate-dependent epidemic model to simulate the
SARS-CoV-2 pandemic by probing different scenarios based on known coronavirus biology. We find
that although variations in weather may be important for endemic infections, during the pandemic
stage of an emerging pathogen, the climate drives only modest changes to pandemic size. A
preliminary analysis of nonpharmaceutical control measures indicates that they may moderate the
pandemic-climate interaction through susceptible depletion. Our findings suggest that without
effective control measures, strong outbreaks are likely in more humid climates and summer weather
will not substantially limit pandemic growth.

T
he severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) pandemic
represents an unprecedented public
health, social, and economic challenge.
Sustained local transmission is present

inmultiple countries and in all continents, and
the implications in terms of morbidity and
mortality are expected to be severe (1, 2). The
role of seasonal and geographic climate varia-
tions in modulating the transmission of the
virus has received increasing attention. Studies
using a regression framework have found a
role for temperature and relative and specific
humidity in the transmission of SARS-CoV-2
(3–7), suggesting that cold, dry conditions in-
crease the transmission of the virus. However,
with limited data on the current epidemic, these
early-stage results are inevitably inconclusive.
Furthermore, the relative importance of climate
drivers when compared with high population
susceptibility during the pandemic stage of an
emerging infection such as SARS-CoV-2 has not
been fully characterized.
Climate affects the transmission of several

directly transmitted pathogens (8). Specific
humidity (the mass of water vapor in a unit
mass of moist air) has been shown to be im-
portant for influenza transmission in both lab-
oratory settings (9–11) and population-level
studies (12). Respiratory syncytial virus (RSV),
a childhood pathogen, has also been found to
be dependent on specific humidity (13) and
exhibits latitudinal correlations with climate

(14). For both influenza and RSV, low specific
humidity increases transmission, and epidem-
ics tend to peak in the wintertime in northern
latitudes. However, other directly transmitted
infections exhibit different patterns (15), with
enteroviruses, for instance, often peaking in
the summer months (16).
Prior work on climate and directly trans-

mitted diseases has typically considered en-
demic infections, such as seasonal influenza
or RSV. Emerging pathogens, by contrast, have
distinct dynamics driven by high population
susceptibility (17). A key question is the extent
to which seasonal and geographic climate var-
iations are relevant in the pandemic phase
of an emerging infection. Here, we build on
known features of endemic human corona-
viruses and other directly transmitted infec-
tions to probe this question. Although we do
not yet know the climate sensitivity of SARS-
CoV-2 transmission directly, data exists on
four other coronaviruses that currently circulate
in human populations. Two of these corona-
viruses, humancoronavirusHKU1 (HCoV-HKU1)
and HCoV-OC43, are of the same betacorona-
virus genus as SARS-CoV-2 (18).
We use data on HCoV-HKU1 and HCoV-

OC43 fromU.S. census regions to understand
the potential climate dependence of betacor-
onavirus transmission (19).We fit a susceptible-
infected-recovered-susceptible (SIRS) model
to case data of HCoV-HKU1 and HCoV-OC43
where the fitted parameters include the climate
dependence of transmission and the length of
immunity after infection. All other parameters
are fixed, based on values from Kissler et al.
(18). Motivated by the climate dependence of
influenza and RSV, we posit that transmis-
sion depends on specific humidity: We use
population-weighted average climatology of
specific humidity over 2014–2020 taken from
the ERA5 reanalysis dataset (20), with popu-

lation data from (21). We note that specific
humidity is dependent on temperature through
the Clausius-Clapeyron relation, and results
using both variables have been found to be
equivalent for other diseases (13). After fitting
the model parameters, we run simulations of
the SARS-CoV-2 pandemic under three sce-
narios. In the first scenario, we assume that
SARS-CoV-2 has the same sensitivity to climate
as influenza, based on a prior model from
laboratory studies (9, 12). In the second and
third scenarios, we assume that SARS-CoV-2
has the same climate dependence and length
of immunity as HCoV-OC43 and HCoV-HKU1,
respectively. Although we assume that the cli-
mate dependence is the same as these three
infections, our simulations use the basic re-
production number (R0) based on current es-
timates of SARS-CoV-2 (18, 22).
We first consider the seasonality of the en-

demic betacoronaviruses. Figure 1 shows the
average seasonal pattern of endemic betaco-
ronavirusesHCoV-OC43andHCoV-HKU1 (here-
after OC43 andHKU1) for different regions in
the United States. Cases of both diseases in-
crease as specific humidity declines (fig. S1).
We therefore assume that, to some extent,
transmission will decline with specific humid-
ity; however, the extent of the decline is yet to
be determined. We characterize the link be-
tween specific humidity and the transmission
of SARS-CoV-2 using plausible estimates de-
rived from the two endemic betacoronaviruses
as well as influenza. Figure 1A shows different
potential functional forms for the climate-
transmission relationship. Changes to specific
humidity modulate R0 between a maximum
wintertime value and a hypothesized lower
bound, taken from prior studies (18, 22). In the
extreme cases, transmission (R0) either rapidly
declines as specific humidity increases or has
no relationship with specific humidity. The
highlighted influenza relationship is based on
laboratory studies using the guinea pig animal
model (9–11) and later used to predict influ-
enza epidemics in human populations (12). In
this case R0 values correspond to SARS-CoV-2
estimates.
The other two scenarios in Fig. 1A corre-

spond to the relationship between climate and
OC43 and HKU1 transmission. We evaluate
the functional form of this relationship by fit-
ting our climate-driven SIRSmodel to U.S. case
data for the two infections (Fig. 1, B and C, and
figs. S2 and S3). Our results (Fig. 1, D and E)
suggest a somewhat wide range of climate de-
pendency for the two coronaviruses, withHKU1
having a much steeper response to specific
humidity than OC43. Strong seasonal forcing
has been linked to biennial outbreaks, as ob-
served for HKU1 (fig. S3), in other respiratory
pathogens (13) and implies endemic dynamics
driven by herd immunity; however, this infer-
encemay be complicated by cross-protection
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from other circulating strains (18). Although
there is some uncertainty in our estimates,
simulating a pandemic outbreak using a range
of climate-transmission dependencies allows
us to explore a wide plausible range of poten-
tial climate effects.
We simulate a pandemic invasion for all

locations (Fig. 2, A and B) and focus on the
results for nine exemplar cities (Fig. 2, C to E),
each with a very distinct mean and seasonal
cycle of specific humidity (fig. S4). We stress
that these initial simulations explore only the
interaction of the epidemic (SIRS)model clock-
work and seasonality in transmission; they do
not address complexities of demography, con-
trol, and other environmental factors. In Fig. 2,
C to E, we show the evolution of the simulated
pandemic, holding population constant, for
Northern Hemisphere, Southern Hemisphere,
and tropical locations. The model assumes
that the outbreak starts at the same time and
that no control measures are in place, reveal-
ing only the effect of climate on pandemic size
and duration. For the Northern Hemisphere
locations, we do not see any substantial differ-
ence in pandemic size across all three scenarios,
despite very different climates in New York,
London, andDelhi. In the influenza andHKU1
scenarios, tropical locations experience a more
sustained, lower-intensity pandemic than those
in the Northern Hemisphere. These scenarios
represent a stronger dependence on climate
than the OC43 scenario, such that the lack of
really dry conditions (low specific humidity)
in tropical regions means that these locations
do not experience the high transmission rates
of the higher latitudes. However, the outbreak

in the tropical cities remains substantial, and
factors we do not explore here, such as pop-
ulation density, could further exacerbate the
size of the epidemic.
We also simulate the pandemic in a range

of Southern Hemisphere locations (Fig. 2D).
We see only minor delays in the peak of South-
ern Hemisphere locations relative to those in
the Northern Hemisphere (Fig. 2B), despite
the 6-month shift in specific humidity season-
ality between the two hemispheres (fig. S4).
For the OC43 scenario, pandemics are tempo-
rally aligned across all locations and of similar
magnitude. A stronger climate response for
influenza andHKU1 parameters leads to slight
regional differences. It is worth noting that
our different scenarios also reflect a range of
immunity lengths. The size of the pandemic
peak is not affected by changes in immunity
length (fig. S11), but the timing of later-stage
outbreaks is partially dictated by this param-
eter. The differential timing of secondary peaks
in the influenza and HKU1 scenarios, which
have a similar climate dependence, is driven by
this variability.
During the pandemic stage of an emerging

pathogen, the lack of population immunity—
that is, high susceptibility—is a crucial driver.
To illustrate this in the general case, we run
our simulation model for different climates
(represented by the seasonal range of humidity
values a location experiences) and different
levels of population susceptibility, using the
mean specific humidity and seasonality of
New York. Figure 3, A to C, shows the results
in terms of the size of the pandemic peak. Al-
though humidity range does modulate pan-

demic size, population susceptibility exhibits
a much steeper gradient. For novel pathogens,
such as SARS-CoV-2, the proportion of the pop-
ulation susceptible to infection may be close to
1. To illustrate the potential longer-term behav-
ior of the pandemic, we plot a typical pandemic
trajectory on the susceptible-infected (SI) phase
plane (Fig. 3D). The initial pandemic trajec-
tory (red) is relatively independent of seasonal
forcing. This then gives way to the endemic
attractor (blue), which oscillates around the
equilibrium of the unforced model (green).
These longer-term dynamics show a much
stronger signature of seasonal forcing than
the initial pandemic phase (figs. S9 and S10).
Figures 3E and 4 show a preliminary ex-

ploration of the impact of nonpharmaceutical
control on the epidemic trajectory. In Fig. 3E,
we show the SI phase plane where the HKU1
parameters of R0 are artificially controlled to
R0 = 1.1 for a 6-month period. In this scenario,
the control measures result in a moderate re-
duction in peak incidence as the outbreak is
shifted to the summer months; however, high
susceptibility still results in a substantial num-
ber of cases. In Fig. 4, we explore the interac-
tion between the climate and control measures
in more detail. We consider four scenarios:
climate-dependencies based on OC43 and
HKU1 as well as control measures where R0 =
1.1 or 1.3, representing limited transmission.
For each scenario, we vary the length of the
control measure and the location; however,
for simplicity, we assume that all control mea-
sures start at two times: 4 and 6 weeks after
the disease is introduced. We note that these
control measures are simplified test cases and
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Fig. 1. Specific humidity and transmission. (A) Colored lines represent
different hypotheses for the relationship between climate and transmission for
SARS-CoV-2. Values of R0 reflect SARS-CoV-2 estimates. The functional
climate-dependence of influenza transmission, OC43 transmission, and HKU1
transmission is shown with solid, dashed, and dotted black lines, respectively.
(B and C) A summary of seasonal model fits (blue line) for scaled average weekly

cases (gray) of (B) OC43 and (C) HKU1. (Our model captures the biennial cycles
of HKU1, shown in fig. S3, and detailed model fits for OC43, shown in fig. S2.)
Coefficient of determination (R2) values are shown. I, number infected.
(D and E) Fit results in terms of climate dependence and immunity length
(weeks) for (D) OC43 and (E) HKU1, where mean fits are shown with dashed
lines. MW, Midwest; W, West; N, North; S, South.
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do not represent the local heterogeneity and
efficacy of current controls, which are yet to be
determined. These results show changes to
peak incidence; changes to the number in-
fected are shown in fig. S5.
For all control scenarios, we assume a de-

gree of transmission during the control period,
such that R0 > 1, resulting in an increase in
population immunity over time. In the scenar-
ios where R0 = 1.3, immunity builds faster and
control measures work to reduce the pandemic
peak after several months. In the R0 = 1.1 sce-
nario, more time is required for population
immunity to build such that the pandemic
peak is reduced across all locations. In this
scenario, as susceptibility declines, the climate
plays a more substantial role in determining

pandemic peak size (Fig. 4, A and B). When
R0 = 1.1 in both the HKU1 and OC43 sce-
narios, releasing control measures close to
the month of maximum transmission may
result in a larger pandemic peak compared
with the no-control scenario, particularly in
the higher latitudes where transmission likely
increases in the winter (fig. S6).
More broadly, our simulated control mea-

sures imply that the key determinant of re-
duced peak incidence is the extent to which
population immunity builds over the control
period, as demonstrated by the higher efficacy
of the R0 = 1.3 control scenario in mitigating
peak incidence. The climate plays a complex
role in tuning the efficacy of potential control
efforts, resulting in differential outcomes de-

pending on location; however, population sus-
ceptibility remains a fundamental driver. Further
exploration of these complexities may be nec-
essary when evaluating location-specific con-
trols. The timing of introduction and the efficacy
of local control measures, as well as factors
such as population density and contact patterns,
could also shape future outcomes. Serological
surveys, at the local level, will be important for
tracking the build-up of immunity over time.
Moreover, implementing control measures buys
crucial timewhile vaccines andother treatments
are developed.
There are several caveats to interpreting

these results. Primarily, these simulations do
not address location-specific factors such as
spatial and social mixing patterns, contact
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Fig. 2. Global model
results and nine
example trajectories.
(A and B) The (A)
maximum number of
infections per capita
(I/N) and (B) timing of
peak I/N for global
locations. Black circles
show locations where
trajectories are explic-
itly shown. The color
scale shows maximum
I/N in (A) and week of
peak I/N in (B).
(C to E) Simulated
pandemics are shown
for cities in (C) the
northern hemisphere,
(D) the southern
hemisphere, and (E)
tropical locations. The
dotted line represents a
pandemic with no
climate dependence.
NY, New York.
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Fig. 3. Pandemic peak size depends on the proportion of the population
that is susceptible. (A to C) For the three scenarios, (A) influenza, (B) OC43, and
(C) HKU1, the surface plot shows the dependence of maximum pandemic incidence
per capita on the seasonal range of humidity and the proportion of the population
that is susceptible, assuming mean humidity of New York. params, parameters.
(D) The time series from pandemic to endemic outbreaks for an example location

(Wuhan with HKU1 params) (top) and the equivalent SI phase plane of pandemic and
epidemic trajectories (bottom). The two nullclines are from the unforced SIRS
using mean R0. The green circle represents the equilibrium of the unforced model.
S/N, proportion susceptible; I

�

, equilibrium infected; S
�

, equilibrium susceptible;
N, total population. (E) The same trajectory but with a 6-month control period
(reducing R0 to 1.1). The yellow shading indicates the timing of the control period.
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Fig. 4. Interaction between control measures and the climate. (A and B) Four scenarios representing the interaction of different climate dependencies (OC43 and
HKU1 params) with two potential control measures [R0 =1.1 and 1.3 in the control period, occurring (A) 1 month and (B) 6 weeks after pandemic start]. The size
and color of the circles represent the size of peak incidence (within 2 years of pandemic start) relative to the no-control scenario. White crosses show the month of
maximum climate-driven transmission, i.e., lowest specific humidity.
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networks, population density, and the specifics
of control timing and efficacy. In particular, our
results apply most closely to relatively well-
mixed epidemics in large cities. Rural areas
(with potentially lowerR0; see figs. S7 and S8)
may have amore delayed initial epidemicwith
complex consequences for ensuing interac-
tions with climate drivers. Our model also
does not account for potential cross-protection
from other coronavirus infections (18). Cross-
immunity may contribute to the seasonality
of endemic coronaviruses, meaning that esti-
mated climate drivers could be even weaker
than we suggest and that our main findings
are conservative (16, 23). Finally, results from
influenza and RSV suggest that high precipi-
tation may play a role in driving transmission
(13, 24), particularly in tropical locations. Owing
to limited data on betacoronaviruses from
tropical locations, we have not been able to
confirm whether a rainfall signal exists. Pre-
cipitation effects and other drivers such as
schooling may also affect the epidemic tra-
jectory, particularly after the pandemic. We
further test for the sensitivity of our results to
changes in core parameter values (materials
andmethods and figs. S7 to S11). These analyses
suggest that our results are qualitatively robust
to variations in climate dependency andweather
fluctuations.
Our results suggest that although climate

may play a role inmodulating detailed aspects
of the size and time scales of a pandemic out-
break within a particular location, population
immunity is a much more fundamental driver
of pandemic invasion dynamics. Although our
HKU1 scenario presents a modest role for cli-
mate in terms of shifting the timing and in-
tensity of the pandemic, a scenario with OC43
parameters is equally likely. In terms of the
SARS-CoV-2 pandemic, our results imply that
both tropical and temperate locations should
prepare for severe outbreaks of the disease
and that summertime temperatures will not
effectively limit the spread of the infection.

However, this does not mean that the climate
is not important in the longer term. Endemic
cycles of the disease will likely be tied to cli-
mate factors, and seasonal peaks may vary
with latitude (figs. S3, S9, and S10). A more
detailed understanding of climate drivers as
well as immunity length will be crucial for
understanding the implications of control
measures. Furthermore, weather and near-
term climate forecasts could be helpful for
predicting secondary outbreaks after the
initial pandemic phase has passed.
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