Water delivery by pebble accretion to rocky planets in habitable zones in evolving disks
Ida, Shigeru1; Yamamura, Takeru2; Okuzumi, Satoshi3
2019-04-03
发表期刊ASTRONOMY & ASTROPHYSICS
ISSN1432-0746
卷号624
摘要Context. The ocean mass of the Earth is only 2.3 x 10(-4) of the whole planet mass. Even including water in the interior, the water fraction would be at most 10(-3)-10(-2). Ancient Mars may have had a similar or slightly smaller water fraction. What controlled the amount of water in these planets has not been clear, although several models have been proposed. It is important to clarify the control mechanism to discuss water delivery to rocky planets in habitable zones in exoplanetary systems, as well as that to Earth and Mars in our solar system.Aims. We consider water delivery to planets by icy pebbles after the snowline inwardly passes planetary orbits. We derive the water mass fraction (f(water)) of the final planet as a function of disk parameters and discuss the parameters that reproduce a small value of f(water )comparable to that inferred for the Earth and ancient Mars.Methods. We calculated the growth of icy dust grains to pebbles and the pebble radial drift with a 1D model, by simultaneously solving the snowline migration and dissipation of a gas disk. With the obtained pebble mass flux, we calculated accretion of icy pebbles onto planets after the snowline passage to evaluate f(water )of the planets.Results. We find that f(water) terregulatedby the totalmass is (M-res) of icy dust materials preserved in the outer disk regions at the timing (t = t(snow)) of the snowline passage of the planetary orbit. Because M-res decays rapidly after the pebble formation front reaches the disk outer edge (at t = t(pff)), f(water) is sensitive to the ratio t(snow)/t(pff ) which is determined by the disk parameters. We find snow t(snow)/t(pff) < 10 or > 10 is important. By evaluating Mres analytically, we derive an analytical formula of f water that reproduces the numerical results.Conclusions. Using the analytical formula, we find that f(water) of a rocky planet near 1 au is similar to the Earth, i.e., similar to 10(-4)-10(-2), in disks with an initial disk size of 30-50 au and an initial disk mass accretion rate of similar to(10(-)(8)-10(-)(7))M-circle dot yr(-1) for disk depletion timescale of approximately a few M yr. Because these disks may be median or slightly compact/massive disks, our results suggest that the water fraction of rocky planets in habitable zones may often be similar to that of the Earth if icy pebble accretion is responsible for water delivery.
关键词planets and satellites: formation planets and satellites: terrestrial planets protoplanetary disks
DOI10.1051/0004-6361/201834556
收录类别SCI
语种英语
WOS关键词Astronomy & Astrophysics
WOS研究方向Science & Technology
WOS类目Astronomy & Astrophysics
WOS记录号WOS:000463134300002
出版者EDP SCIENCES S A
引用统计
被引频次:31[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
专题任务一_子任务一
循证社会科学证据集成
任务一
作者单位1.Tokyo Inst Technol, Earth Life Sci Inst, Meguro Ku, Tokyo 1528550, Japan
2.Tokyo Inst Technol, Dept Earth & Planetary Sci, Meguro Ku, Tokyo 1528551, Japan
3.Tokyo Inst Technol, Dept Earth & Planetary Sci, Meguro Ku, Tokyo 1528551, Japan
推荐引用方式
GB/T 7714
Ida, Shigeru,Yamamura, Takeru,Okuzumi, Satoshi. Water delivery by pebble accretion to rocky planets in habitable zones in evolving disks[J]. ASTRONOMY & ASTROPHYSICS,2019,624.
APA Ida, Shigeru,Yamamura, Takeru,&Okuzumi, Satoshi.(2019).Water delivery by pebble accretion to rocky planets in habitable zones in evolving disks.ASTRONOMY & ASTROPHYSICS,624.
MLA Ida, Shigeru,et al."Water delivery by pebble accretion to rocky planets in habitable zones in evolving disks".ASTRONOMY & ASTROPHYSICS 624(2019).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ida, Shigeru]的文章
[Yamamura, Takeru]的文章
[Okuzumi, Satoshi]的文章
百度学术
百度学术中相似的文章
[Ida, Shigeru]的文章
[Yamamura, Takeru]的文章
[Okuzumi, Satoshi]的文章
必应学术
必应学术中相似的文章
[Ida, Shigeru]的文章
[Yamamura, Takeru]的文章
[Okuzumi, Satoshi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。

元出版是什么?

元出版是融合预印本出版、数据出版、结构化信息出版等当前开放出版实践与理念为一体的开放出版新模式,旨在提供一个科学工作者完全融入的泛在沉浸式开放知识交流机制。

MetaPub团队

  • 关于我们
  • 编委会
  • 审稿专家
  • 编辑部

开放研究

  • 学科领域
  • 入驻期刊
  • 入驻会议
  • 开放数据集

帮助

  • 元作品投稿流程
  • 元作品写作要求
  • 元作品出版声明
  • 元作品出版标准
  • 审稿注意事项
地址:四川天府新区群贤南街289号 邮编:610299 电子邮箱:liucj@clas.ac.cn
版权所有 蜀ICP备05003827号